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Planar piecewise linear

We all know that discrete piecewise linear dynamical systems can be very complex,
even for one-dimensional maps. In the plane it is also common knowledge:

A strange attractor for the Lozi map
(1978): F (x , y) = (1− α|x |+ y , βy)

Just to highlight some recent work in our community, we cite Gardini, Sushko &
Matsuyama and Gardini & Tikjha.

Cima, Gasull, Mañosas, Mañosa Invariant graphs PODE 2025 3 / 86



In the last years we have investigated the following family of DDS

F (x , y) = (|x | − y + a, x − |y |+ b) .

There are some works of Tikjha, Lapierre & Lenbury..., Bula & Sı̄le and Aiewcharoen,
Boonklurb & Konglawan focusing on periodic and pre-periodic behaviors for some
values of the parameters.

Numerically, only periodic and pre-periodic behavior are founds. For instance, for
a = −1, b = −13/16 we obtain:
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But there is a hidden complex dynamics.
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F (x , y) = (|x | − y + a, x − |y |+ b) ,

We observe that on each quadrant Qi the map F is an affine one:

Q1 = {(x , y) : x ≥ 0, y ≥ 0}, F1(x , y) = (x − y + a, x − y + b),

Q2 = {(x , y) : x ≤ 0, y ≥ 0}, F2(x , y) = (−x − y + a, x − y + b),

Q3 = {(x , y) : x ≤ 0, y ≤ 0}, F3(x , y) = (−x − y + a, x + y + b),

Q4 = {(x , y) : x ≥ 0, y ≤ 0}, F4(x , y) = (x − y + a, x + y + b).
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Main results in a few words

For the map
F (x , y) = (|x | − y + a, x − |y |+ b) ,

we prove:

Periodic and pre-periodic behavior:

• For a ≥ 0 all the orbits are pre-periodic and moreover the set of periodic orbits
has finite cardinality.

A novel behavior:

• For a < 0 we prove that there exists a compact graph Γ, which is invariant under
the map F , such that for all (x , y) ∈ R2 there exists n = n(x , y) ∈ N such that
F n(x , y) ∈ Γ.

• We give explicitly all these invariant graphs Γ.

• We characterize the dynamics of the map restricted to each graph. In particular
for each (a, b) we characterize when F |Γ has zero or positive entropy.

⇒ Intermediate dynamical behavior between regular regime and full-plane chaos.
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Parameter reduction through conjugation

Given
Fa,b(x , y) = (|x | − y + a, x − |y |+ b) ,

Note that for any λ > 0 we get

λFa,b(x/λ, y/λ) = Fλa,λb(x , y),

which says that for any a, b ∈ R2 and for any λ > 0:

The maps Fλa,λb and Fa,b are conjugated.

The above observation allows to reduce the full study when (a, b) ∈ R2 to the following
five cases:

• a = 0 which reduces to three cases: b = 0; b = −1; b = 1.

• a = 1 and b ∈ R.

• a = −1 and b ∈ R.
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The simpler cases: a ≥ 0

Denote by Per(F ) the set of periodic points of F .

We will say that the dynamics of F is pre-periodic (in finite time) if for all (x , y) ∈ R2

there exists n = n(x , y) ≥ 0 such that F n(x , y) ∈ Per(F ).

Theorem A

If a ≥ 0 then F is pre-periodic. Moreover, the set Per(F ) has finite cardinality.

This result extends previous ones obtained by the authors cited before.
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Some further details...

Proposition (case a = 0)

Assume that a = 0:

(a) If b = 0, then (0, 0) is the fixed point of F and F 5(R2) = (0, 0).

(b) If b = −1, then (1, 0) is the fixed point of F and F 6(R2) = (1, 0).

(c) If b = 1, then F has the fixed point p = (−1/5, 2/5) , and the two 3-periodic orbits
Q and P (explicit).
The orbit of any other point reaches P ∪Q in finite time (not uniform).

Proposition (case a = 1)

When a = 1, the following statements hold.

(a) For b ≤ 2, F has the fixed point p = (2− b, 1) ∈ Q1.

For b ∈ [−1/2, 2] and for all (x , y) ∈ R2, F 5(x , y) = p, while for b < −1/2,
F 6(x , y) = p.

(b) For b > 2, F has the fixed point q =
( 2−b

5 , 1+2b
5

)
∈ Q2.

Also it has two 3-periodic orbits, P and Q (explicit).
The orbit of any other point reaches P ∪Q in finite time (not uniform).
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The more interesting cases: a < 0

Let us study
F (x , y) = (|x | − y + a, x − |y |+ b) ,

with a < 0.

Theorem B
Set a < 0. For all b ∈ R there exists a compact graph Γ which is invariant
under the map F such that for all x = (x , y) ∈ R2 there exists nx ∈ N (that
depends on x) such that F n

x (x , y) ∈ Γ.

So final dynamics takes place in certain compact graphs, that we will see
right now, however:

There are many distinct dynamics on each graph.
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Complete catalog of graphs for the normalized case a = −1: a = −1, b ≤ −2
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a = −1, −2 < b ≤ −1
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a = −1, −1 < b ≤ −3/4
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a = −1, −3/4 < b ≤ −1/4
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a = −1, −1/4 < b ≤ −2/9
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a = −1, −2/9 < b ≤ −1/5
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a = −1, −1/5 < b ≤ −1/8
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a = −1, −1/8 < b ≤ −1/9
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a = −1, −1/9 < b < 0

Cima, Gasull, Mañosas, Mañosa Invariant graphs PODE 2025 19 / 86



a = −1, 0 ≤ b ≤ 1/10
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a = −1, 1/10 < b ≤ 1/7
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a = −1, 1/7 < b ≤ 1/6
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a = −1, 1/6 < b ≤ 3/16
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a = −1, 3/16 < b < 4/15

Cima, Gasull, Mañosas, Mañosa Invariant graphs PODE 2025 24 / 86



a = −1, 4/15 < b ≤ 2/7

Cima, Gasull, Mañosas, Mañosa Invariant graphs PODE 2025 25 / 86



a = −1, 2/7 < b ≤ 1/3
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a = −1, 1/3 < b ≤ 1/2
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a = −1, 1/2 < b ≤ 2/3
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a = −1, 2/3 < b ≤ 5/7
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a = −1, 5/7 < b ≤ 19/26
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a = −1, 19/26 < b ≤ 20/27
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a = −1, 20/27 < b ≤ 3/4
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a = −1, 3/4 < b ≤ 154/205
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a = −1, 154/205 < b ≤ 155/206
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a = −1, 155/206 < b ≤ 58/77
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a = −1, 58/77 < b ≤ 19/25
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a = −1, 19/25 < b ≤ 29/38
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a = −1, 29/38 < b ≤ 10/13
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a = −1, 10/13 < b ≤ 11/14
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a = −1, 11/14 < b ≤ 4/5

Cima, Gasull, Mañosas, Mañosa Invariant graphs PODE 2025 40 / 86



a = −1, 4/5 < b ≤ 1
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a = −1, 1 < b ≤ 3/2
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a = −1, 3/2 < b ≤ 8/5
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a = −1, 8/5 < b ≤ 7/4
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a = −1, 7/4 < b < 2
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a = −1, 2 ≤ b < 3
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a = −1, b ≥ 3
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To prove Theorem B we must:

1. Step 1: Show that for every b, the orbits of all points in R2 reach the set Q1 ∪Q3

at some time.

2. Step 2: For each b ∈ R:

2.1 We need to characterize the graph Γ (analytically).
2.2 We need to prove its invariance.

3. Step 3: Show that for every b, every orbit with initial conditions in Q1 ∪Q3

reaches the invariant graph Γ (in finite time).

Proposition 1 (Step 1)

For a = −1 and b ∈ R, the orbit of every point in Q2 ∪Q4 reaches Q1 ∪Q3, except
the fixed point in Q2 (b > 1/2); the fixed point in Q4 (b < 0); and a 3-periodic orbit in
Q2 ∪Q4 (3/4 < b < 2).

Proposition 2 (Steps 2 and 3)

Let a = −1, then:

(a) For every b ∈ R, there exists a compact graph Γ invariant under F .

(b) For every b ∈ R and for (x , y) ∈ Q1 ∪Q3, then F 11(x , y) ∈ Γ.
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Idea of the proof of Step 1

1. The fixed points of F2 = F|Q2 and F4 = F|Q4 (real or virtual) are unstable focus.
Any other point must leave Q2 or Q4, respectively.

2. It is enough to prove the result for the points in Q4 such that its image by F4 is in
Q2, i.e. the iterates, Ki := F i (K ), of the set

K := {(x , y) ∈ Q4 such that F (x , y) ∈ Q2}.

A lot of cases, but the easiest one is −1 < b ≤ 0 :

point p1, 0q whose second iterate is in Q3. In both cases, since the points in Q4 can’t

be always in Q4, their orbits have to reach Q1 or Q3.

(ii) Assume that ´1 ă b ď 0. From the inequalities (4) we easily obtain that K is the

triangle defined in Figure 4, where alse is shown its two first iterates K1 “ F pKq and

K2 “ F pK1q, obtaining that after two iterates, every point in K is in Q3.

K

p´b, 0q p1, 0q

p 1´b
2
,´ 1`b

2
q

(a) The set K.

K1

p´1´ b, 0q
p0, 0q

p0, b` 1q

(b) The set K1 “ F pKq.

K2

p´1, bq

pb,´1qp´2´ b,´1q

(c) The set K2 “ F pK1q.

Figure 4: The evolution of K under the action of F when ´1 ă b ď 0.

(iii) Assume that 0 ă b ă 1
2 . The set K is the quadrilateral defined by the vertices:

B
p0, 0q, p0,´bq, p1, 0q,

ˆ
1´ b

2
,´b` 1

2

˙F
,

see Figure 5. Then K1 “ F4pKq Ă Q2 is the quadrangle defined by

K1 “ xp0, 0q, p0, b` 1q, p´1, bq, pb´ 1, 0qy

; Since F2pK1q Ă Q2 YQ3, we define K2 “ F2pK1q XQ2. It is the triangle defined by

K2 “ xp´b´ 1, 0q, p´1, bq, pb´ 1, 0qy .

Analogously, we compute the sets K3 “ F pK2q X Q4 and K4 “ F pK3q X Q4, which

are the triangles defined by

K3 “ xp0, b´ 1q, p0,´1q, pb,´1qy ,
K4 “ xp0, 2b´ 1q, p0, b´ 1q, pb, 2b´ 1qy .

The image of K4 is a triangle, whose position depends on whether b ď 1
4 or b ą 1

4 , see

Figure 6 (where in Figure (b) the figure only depicts the case b ă 1{3 and therefore

the point p´2b, 3b´ 1q is on Q3). In the first case, it is easy to see that F4pK4q Ă Q3.

13
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Steps 2 and 3: Idea of the proof of Proposition 2. Example: a = −1, 2/3 < b ≤ 5/7.

We will follow the iterates of Q3 for a = −1 and 2/3 < b ≤ 5/7.

Γ1
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Second iterate of Q3

Γ2
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Third iterate of Q3

Γ3
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Fourth iterate of Q3

Γ4

For the first time the image is compact.

This is because the collapse of the unbounded edge.
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Fifth iterate of Q3

Γ5
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Sixth iterate of Q3

Γ6
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Seventh iterate of Q3

Γ7

At this point we realize that the following iterates remain in

Γ = Γ4 ∪ Γ5 ∪ Γ6 ∪ Γ7
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Summary of the process:

Γ1 Γ2 Γ3 Γ4

Γ5 Γ6 Γ7

⇒
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Γ
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We prove the invariance by following the image of all edges

S

R2

W
X7X4

R6
Z3

Y2
X2 X5

R3X1

R4
Q

Z1

X6X3

R5Z2

Y1

R1

T1 T2

R7

P1 = (−b−2,−1), P2 = (b + 2,−3), P3 =

(b + 4, 2b − 1), P4 = (−b + 4, 5), Q =

(0, 7b−5), R1 = (0, 2b−1), R2 = (−2b, 1−
b), R3 = (3b−2,−1), R4 = (3b−2, 4b−3),

R5 = (−b, 8b−5), R6 = (−7b+4,−8b+5),

R7 = (15b − 10,−14b + 9), S = (0, b +

1), T1 = (−b, 0), T2 = (b − 1, 0), W =

(1 − 3b, 0), X1 = (0,−1), X2 = (0, b − 1),

X3 = (−b, 2b−1), X4 = (−b, 1−2b), X5 =

(3b − 2, 1 − 2b), X6 = (5b − 4, 2b − 1),

X7 = (−7b + 4, 4b−3), Y1 = (−7b + 4, 0),

Y2 = (7b − 5,−6b + 4), Z1 = (7b − 5, 0),

Z2 = (−7b + 4, 8b − 5) and Z3 = (−b, 9−
14b).

Cima, Gasull, Mañosas, Mañosa Invariant graphs PODE 2025 59 / 86



b ≤ −2 −2 < b ≤ −1/4 −1/4 < b < 0 0 ≤ b ≤ 3/16
N1 8 6 5 6
N3 5 5 4 4

3/16 < b < 4/15 4/15 ≤ b ≤ 2/3 2/3 < b ≤ 7/4 b > 7/4
N1 11 6 5 5
N3 9 4 4 5

Table: Arrival times N1 and N3 of points in Q1 ∪ Q3 to Γ.

In this case F 4(Q3) = Γ4 ⊂ Γ.

Analogously F 5(Q1) ⊂ Γ
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A remark

This phenomenon is not unique to the family of maps studied in this work. The
following figures are drawn from ongoing research demonstrating that the
phenomenon also arises in broader families of maps, in this case featuring two
regions.

Dynamics of a particular map (left); Process of formation of the graph in another case
(right).

Cima, Gasull, Mañosas, Mañosa Invariant graphs PODE 2025 61 / 86



Dynamics (at last!) Summary:

Theorem D (as stated in the first work)

Set a < 0. For each b ∈ R consider the map F restricted to the corresponding
invariant graph Γ. Set c = −b/a, then
There exists α and β such that:

1. F |Γ has positive entropy if and only if c ∈ (α,−1/36) ∪ (β, 1) ∪ (1, 8).

2. F |Γ has zero entropy if and only if c ∈ (−∞, α] ∪ [−1/36, β] ∪ {1} ∪ [8,∞).

Furthermore:

• α ∈ (−112/137,−13/16) ≈ (−0.8175,−0.8125),
β ∈ (603/874, 563/816) ≈ (0.6899, 0.6900).

Other rational bounds can be found with arbitrarily high precision.

• In these two intervals the entropy of F |Γ is non-decreasing in c.

• The entropy is discontinuous at c = −1/36, but continuous at c ∈ {α, β, 1, 8}.

−∞ α − 1
36 β 1 8 +∞

c
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Theorem D

−∞ α − 1
36 β 1 8 +∞

c

Proposition

α = −0.817001660127394075579379106922368833240 . . . ,

β = 0.68993242820457428670048891295078173870526 . . . ,

where all shown digits are correct.
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Dynamics via Topological entropy

Topological entropy was introduced
by Adler, Konheim & McAndrew (1965)
and also Bowen (1971), Misiurewicz &
Ziemian (1992)

Take a partition P = I1, . . . , In s.t. F (Ii )
is an interval and F |Ii is continuous
and monotonic for i ∈ 1, . . . , n.

The itinerary of x with length m is a
sequence of m symbols that explains
which elements of the partition visit
the first m − 1 iterates of x .

Let N(F ,P,m) be the number of
different itineraries of length m.

a = −1, −1 < b ≤ −3/4

I16

I1
I2

I3

I4

I5
I6 I7

I8

I9

I10

I11

I12I13

I14

I15

•
J1
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Lemma (not the definition of Topological Entropy, but we can use it as such)

Let F : Γ −→ Γ be a piecewise monotone map on a compact graph Γ. Let P be a
monopartition. Then the topological entropy is

h(f ) := ln
(

lim
m

m
√

N(F ,P,m)
)
.

The limit exists, and it is independent of the election of the mono-partition.

Markov partitions

P is a Markov partition if for all I ∈ P, F (I) is the union of some elements of P. In this
case

h(F ) = ln (r(P)) ,

where r(P) is the spectral radius of a Markov matrix M(F ,P) given by

mi,j =

{
1, if Ii ⊂ f (Ij );
0, otherwise

By the Perron-Frobenius Theorem is given by a positive real eigenvalue.

Cima, Gasull, Mañosas, Mañosa Invariant graphs PODE 2025 65 / 86



There are distinct dynamics on each graph! Example: a = −1, −1 < b ≤ −3/4

a = −1, −1 < b ≤ −3/4

I16
I1

I2
I3

I4

I5
I6 I7

I8

I9I10

I11

I12I13

I14

I15

•
J1
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−1 < b ≤ −7/8 . . . − 7/9 ≤ b ≤ −3/4
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For −1 < b ≤ −7/8

For −7/9 ≤ b ≤ −3/4 at least we have:

I1 I4 I6 I8 I10 I13 I16 I2 I5 I7 I9 I12

It turns out that the entropy of this graph is zero. In consequence hpF q “ 0 for this

range of parameters.

When b P p´7{8, ´14{17s the situation is essentialy the same because now I12 covers also

a little portion of I1 but this portion collapses after two iterates. And the same holds for

b P p´14{17, ´112{137s while the portion of I1 covered by I12 collapses after seven iterates.

(b) For ´13{16 § b § ´3{4, we need to refine the partition. Let P1 “ F p´5b, 4b ` 7q “
p´9b ´ 8, ´8b ´ 7q P I1, P2 “ F pP1q “ p17b ` 14, ´16b ´ 15q. When b • ´7{9, P2 P I5 and

we have the following oriented grapf of coverings that gives positive entropy.

J1 I4 I6 I8 I10 I13 I16 I2 I5 I7 I9 I12

where J1 denotes the interval p´b ´ 1, 0qP1.

When b † ´7{9, P2 P I4 and we need to refine another time the partition. Let

P3 “ F pP2q “ p33b ` 28, 2b ´ 1q P I6, P4 “ F pP3q “ p31b ` 28, 36b ` 27q P I8 and

P5 “ F pP4q “ p´5b, 68b ` 55q. When b • ´55{68 we get that P5 P I11 while P5 P I10 when

b P p´111{136, ´55{68q. Adding P1, P2, P3P4 to the partition, the intervals I1, I4, I6, I8

splits in two subintervals. We denote by J1 “ p´b ´ 1, 0qP1, J4 “ p0, b ´ 1qP2, J6 “
p´b, 2b ´ 1qP3, J8 “ pb ` 4, 2b ´ 1qP4 and by K1, K4, K6 and K8 the corresponding re-

maining subintervals of I1, I4, I6, I8. With this notation and assuming that b • ´55{68 we

get the following oriented graph of coverings that also gives positive entropy.

J1 J4 J6 J8 I10 I13 I16 I2 I5 I7 I9 I12

34
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For −1 < b ≤ −7/8 we have “less dynamics” than for b = −7/8. In this case:

M(F ,P) =

I1 I2 I4 I5 I6 I7 I8 I9 I10 I12 I13 I16
I1
I2
I4
I5
I6
I7
I8
I9
I10
I12
I13
I16



0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0



.

The characteristic polynomial is
(
λ6 − 1

)2
, hence, the logarithm of its spectral radius,

the entropy, is zero.
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For −7/9 < b ≤ −3/4 at least we have:

I1 I4 I6 I8 I10 I13 I16 I2 I5 I7 I9 I12

It turns out that the entropy of this graph is zero. In consequence hpF q “ 0 for this

range of parameters.

When b P p´7{8, ´14{17s the situation is essentialy the same because now I12 covers also

a little portion of I1 but this portion collapses after two iterates. And the same holds for

b P p´14{17, ´112{137s while the portion of I1 covered by I12 collapses after seven iterates.

(b) For ´13{16 § b § ´3{4, we need to refine the partition. Let P1 “ F p´5b, 4b ` 7q “
p´9b ´ 8, ´8b ´ 7q P I1, P2 “ F pP1q “ p17b ` 14, ´16b ´ 15q. When b • ´7{9, P2 P I5 and

we have the following oriented grapf of coverings that gives positive entropy.

J1 I4 I6 I8 I10 I13 I16 I2 I5 I7 I9 I12

where J1 denotes the interval p´b ´ 1, 0qP1.

When b † ´7{9, P2 P I4 and we need to refine another time the partition. Let

P3 “ F pP2q “ p33b ` 28, 2b ´ 1q P I6, P4 “ F pP3q “ p31b ` 28, 36b ` 27q P I8 and

P5 “ F pP4q “ p´5b, 68b ` 55q. When b • ´55{68 we get that P5 P I11 while P5 P I10 when

b P p´111{136, ´55{68q. Adding P1, P2, P3P4 to the partition, the intervals I1, I4, I6, I8

splits in two subintervals. We denote by J1 “ p´b ´ 1, 0qP1, J4 “ p0, b ´ 1qP2, J6 “
p´b, 2b ´ 1qP3, J8 “ pb ` 4, 2b ´ 1qP4 and by K1, K4, K6 and K8 the corresponding re-

maining subintervals of I1, I4, I6, I8. With this notation and assuming that b • ´55{68 we

get the following oriented graph of coverings that also gives positive entropy.

J1 J4 J6 J8 I10 I13 I16 I2 I5 I7 I9 I12

34

M(F ,P) =

J1 I2 I4 I5 I6 I7 I8 I9 I10 I12 I13 I16
J1
I2
I4
I5
I6
I7
I8
I9
I10
I12
I13
I16



0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0



.

The characteristic polynomial is λ6(λ6 − 2). The spectral radius is
r = 6
√

2 ≈ 1.122462048, hence

hb(F ) ≥ ln(r) = ln(
6√2) ≈ 0.1155245298.

Cima, Gasull, Mañosas, Mañosa Invariant graphs PODE 2025 70 / 86



A quick way to compute the entropy.

The factor giving rise the spectral radius of the Markov Matrix can be computed using
only the Romes, taking into account the length of its cycles and the itineraries
connecting them.

I1 I4 I6 I8 I10 I13 I16 I2 I5 I7 I9 I12

It turns out that the entropy of this graph is zero. In consequence hpF q “ 0 for this

range of parameters.

When b P p´7{8, ´14{17s the situation is essentialy the same because now I12 covers also

a little portion of I1 but this portion collapses after two iterates. And the same holds for

b P p´14{17, ´112{137s while the portion of I1 covered by I12 collapses after seven iterates.

(b) For ´13{16 § b § ´3{4, we need to refine the partition. Let P1 “ F p´5b, 4b ` 7q “
p´9b ´ 8, ´8b ´ 7q P I1, P2 “ F pP1q “ p17b ` 14, ´16b ´ 15q. When b • ´7{9, P2 P I5 and

we have the following oriented grapf of coverings that gives positive entropy.

J1 I4 I6 I8 I10 I13 I16 I2 I5 I7 I9 I12

where J1 denotes the interval p´b ´ 1, 0qP1.

When b † ´7{9, P2 P I4 and we need to refine another time the partition. Let

P3 “ F pP2q “ p33b ` 28, 2b ´ 1q P I6, P4 “ F pP3q “ p31b ` 28, 36b ` 27q P I8 and

P5 “ F pP4q “ p´5b, 68b ` 55q. When b • ´55{68 we get that P5 P I11 while P5 P I10 when

b P p´111{136, ´55{68q. Adding P1, P2, P3P4 to the partition, the intervals I1, I4, I6, I8

splits in two subintervals. We denote by J1 “ p´b ´ 1, 0qP1, J4 “ p0, b ´ 1qP2, J6 “
p´b, 2b ´ 1qP3, J8 “ pb ` 4, 2b ´ 1qP4 and by K1, K4, K6 and K8 the corresponding re-

maining subintervals of I1, I4, I6, I8. With this notation and assuming that b • ´55{68 we

get the following oriented graph of coverings that also gives positive entropy.

J1 J4 J6 J8 I10 I13 I16 I2 I5 I7 I9 I12

34

The intervals {J1, I16} form a Rome.
J1

↓
I16

↓
J1 →
I16 →

∣∣∣∣ λ−6 − 1 λ−6

λ−6 λ−6 − 1

∣∣∣∣ = 1− 2λ−6

Hence the entropy is hF (b) ≥ ln( 6
√

2) ≈ 0.115524.

In blue: length of the first cycle. In green: length of the second cycle. In maroon:
length of the path connecting them.
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What happens in the case of zero entropy?

1. In the majority of cases there is a finite number of Periodic orbits (repelling or
attracting), the dynamics is pre-periodic in finite time.

2. For b ≤ −1, F |Γ is a degree one map of the circle (it turns around once).

Given a degree 1 map g of S1 it is characterized by the rotation number (which is the
average angle modulus 2π):

(a) g has periodic orbits if and only if ρ(g) ∈ Q.

(b) If ρ(g) = p/q with (p, q) = 1 all the periodic orbits of g have period q.

(c) If ρ(g) ∈ R \Q then the ω-limit is the same for every point an it is either the
whole S1 or a Cantor set.
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Proposition (summary)

(a) If b ≤ −15/8, then ρ = 1/7. There exists a fixed point and two 7-Periodic orbits
(explicit). Each orbit reaches one of these orbits in a finite number of iterates.

(b) If −15/8 ≤ b ≤ −7/4. then ρ varies continuously from 1/7 to 1/6.

• For the irrational values we encounter, there is a fixed point an the ω-limit of the
other points is a Cantor set of Γ.

•When ρ = p/q, ∃ two Periodic orbits q-periodic, that can collide for some values
of b. And the set of periods is are all the natural numbers except: 2− 5, 8− 12,
14− 17, 18, 21− 24, 26, 28− 30, 35, 36, 38− 40, 42, 50, 52, 54, 57, 60, 64− 66,
78, 96, 100, 102, 138 and 220.

(c) If −7/4 ≤ b ≤ −1, then ρ = 1/6. ∃ a fixed point and two 6-Periodic orbits
(explicit). Every orbit reaches one of these orbits in a finite number of iterates.
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What happens in the case of positive entropy?

When the topological entropy is positive, F|Γ has periodic orbits with infinitely different
periods and the orbits have different combinatorial behaviors.

Since, for all b, Γ is compact, when F |Γ has positive entropy, then it is chaotic in the
sense of Li and Yorke.

Chaos in the sense of Li and Yorke

A map f is said to be chaotic in the sense of Li and Yorke if:

1. It has periodic points with arbitrarily large periods and,

2. There exists a uncountable set S (scrambled set), so that for any p, q ∈ S and
each periodic point r of f we have

(a) lim supn→∞ |f n(p)− f n(q)| > 0,
(b) lim infn→∞ |f n(p)− f n(q)| = 0,
(c) lim supn→∞ |f n(p)− f n(r)| > 0.
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An example of more specific results

Lets go back to our base example a = −1, b ∈ (−1,−3/4]

I16
I1

I2
I3

I4

I5
I6 I7

I8

I9I10

I11

I12I13

I14

I15

•
J1
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An example of more specific results: a = −1 and b ∈ (−1,−3/4].

Proposition 24. Zero entropy cases.

Assume a = −1 and b ∈ (−1,−3/4].

(a) If b ∈ (−1,−8/9], there exist 2 different periodic orbits , with period 6:
• O1 associated with a point in I16 (attractive).
• O2 associated with a point in I1 (repellor).

(b) If b ∈ (−8/9,−112/137],

• O1 with with period 12 associated with a point in I16 (attractive).
• O2 with with period 6 associated with a point in I1 (repellor).
• O2 with with period 6 associated with a point inI16 (repellor).

All the orbits are explicit.
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Proposition 24. Positive entropy cases.

(d) If b ∈ [−13/16,−3/4], P2 which can follow very different itineraries. Li-Yorke
Chaos

I1 I4 I6 I8 I10 I13 I16 I2 I5 I7 I9 I12

It turns out that the entropy of this graph is zero. In consequence hpF q “ 0 for this

range of parameters.

When b P p´7{8, ´14{17s the situation is essentialy the same because now I12 covers also

a little portion of I1 but this portion collapses after two iterates. And the same holds for

b P p´14{17, ´112{137s while the portion of I1 covered by I12 collapses after seven iterates.

(b) For ´13{16 § b § ´3{4, we need to refine the partition. Let P1 “ F p´5b, 4b ` 7q “
p´9b ´ 8, ´8b ´ 7q P I1, P2 “ F pP1q “ p17b ` 14, ´16b ´ 15q. When b • ´7{9, P2 P I5 and

we have the following oriented grapf of coverings that gives positive entropy.

J1 I4 I6 I8 I10 I13 I16 I2 I5 I7 I9 I12

where J1 denotes the interval p´b ´ 1, 0qP1.

When b † ´7{9, P2 P I4 and we need to refine another time the partition. Let

P3 “ F pP2q “ p33b ` 28, 2b ´ 1q P I6, P4 “ F pP3q “ p31b ` 28, 36b ` 27q P I8 and

P5 “ F pP4q “ p´5b, 68b ` 55q. When b • ´55{68 we get that P5 P I11 while P5 P I10 when

b P p´111{136, ´55{68q. Adding P1, P2, P3P4 to the partition, the intervals I1, I4, I6, I8

splits in two subintervals. We denote by J1 “ p´b ´ 1, 0qP1, J4 “ p0, b ´ 1qP2, J6 “
p´b, 2b ´ 1qP3, J8 “ pb ` 4, 2b ´ 1qP4 and by K1, K4, K6 and K8 the corresponding re-

maining subintervals of I1, I4, I6, I8. With this notation and assuming that b • ´55{68 we

get the following oriented graph of coverings that also gives positive entropy.

J1 J4 J6 J8 I10 I13 I16 I2 I5 I7 I9 I12

34
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...and a rich transition!

Proposition 24 (transition).

(c) When b ∈ [−112/137,−13/16] there exists a subinterval Π ⊂ Γ which is
invariant by F 6 and such that it is visited for all elements of Γ except for the
points of the repulsive orbit O2 that still is 6−periodic; Moreover

I F 6|Π is semiconjugated to trapezoidal map.

I There exists α such the entropy is zero for for b ∈ [−112/137, α] and
positive and non-decreasing b ∈ (α,−13/16].

I The orbit of certain point in Π under F 6 runs through all the dynamic
situations offered by the maximum of a unimodal map.
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Π
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After some linear changes and a “surgery” to remove a constant interval the map F 6
|Π

is semiconjugate with the map in the red box (this surgery does not affect to entropy)

This map can be extended to one of the full families of trapezoidal maps studied by
Brucks, Misiurewicz and Tresser (1991). They display all situations offered by the
maximum of a unimodal map (logistic, tent...).
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This trapezoidal map allow us to compute rational bounds for the transition parameter
between zero and positive entropy:

−∞ α − 1
36 β 1 8 +∞

c

Remember

α = −0.817001660127394075579379106922368833240 . . .

∈
[
−140850476140085945702816746162288

172399253286857828660669132569609
,−1049417824596806956103568

1284474531463219438945271

]
.

lower bounds: find an orbit with period p = 2N . The Markov partition induced by this
periodic orbit gives zero entropy.

Upper bounds: find an orbit with period p = m 2N with m odd: By the Bowen-Franks’
Theorem: the entropy satisfies: hϕ > ln(2)/p > 0.
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Continuity of transitions from positive to zero entropy at c = 8

−∞ α − 1
36 β 1 8 +∞

c

The entropy hF (c) is discontinuous at c = −1/36.

Theorem

The entropy function hF (c) is continuous at c = 8.

4 < c < 8
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Idea:

The set Γ ∩ {x = −1} is invariant by F 3:

F 3(x ,−1) = (4x − 2 + b,−1).

The changes in the entropy is reflected
on the bifurcations on the directed
graphs depending on the position of the
iterates of x0 = b − 10 by F 3.

We consider:

c ∈ (4, 8) =
∞⋃

n=0

(Sn ∪ Tn ∪ Un ∪ Vn) ,

with
Sn = (pn−1, sn), Tn = [sn, rn], Un = (rn, qn), Vn = [qn, pn],

where

pn =
4(4 · 4n+1 − 1)

2 · 4n+1 + 1
, qn =

8 · 4n+1 + 1
4n+1 + 2

, rn =
16 · 4n+1 − 1
2 · 4n+1 + 4

, sn =
2(4 · 4n+2 − 1)

4n+2 + 11
.
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Proposition

The entropy hF (b) is always positive and
satisfies:

• b ∈ Sn: ln(αn) ≤ hF (b) ≤ ln(βn)

• b ∈ Tn: hF (b) = ln(δn)

• b ∈ Un: ln(αn) ≤ hF (b) ≤ ln(γn)

• b ∈ Vn: hF (b) = ln(ϕn)

Each αn, βn, γn, δn, ϕn is the positive root of a
polynomial (see paper). Moreover:

1 < αn < ϕn < δn < γn < βn,

and all five sequences decrease to 1 as
n→∞.

Hence lim
b→8−

hF (b) = 0

hF (b)

b4 S0 T0 U0 V0 S1T1U1V1 S2 . . .
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Why numerical experiments only detect periodic dynamics?

Theorem C

For all a < 0 and b ∈ R, for an open and dense set of initial conditions in Γ. there
are at most three possible ω-limit sets
Moreover if b/a ∈ Q these ω-limit sets are periodic orbits.

When a < 0 and b/a ∈ Q, generically, the ω-limit sets are periodic orbits.

However: genericity does not explains numerics: the generic set in the above result
must have full Lebesgue measure in Γ.

Theorem

Set a < 0. For −b/a < −2 and for −b/a ∈ [−112/137,−13/16]∪ [603/874, 563/816]
∃ a full Lebesgue measure set of initial conditions in Γ, such that there are at most
three possible ω-limit sets. Moreover, if b/a ∈ Q these ω-limit sets are periodic orbits.
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Thank you very much!

I really like the Cartagena’s whale tail... here there are also other whales, drawn by
Miguel Anxo Prado (Ardalén, 2014).
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