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Introduction

The classical Lotka-Volterra model, where we describe interactions
between predators and prey:

ẋ = rx − bxy

ẏ = −sy + cxy , r , b, s, c > 0
(1)

where x denote the prey density and y denote predator density. Volterra
improved the Lotka-Volterra model by adding a logistic growth function
for the prey population in the absence of predators

ẋ = rx
(

1− x

K

)
− bxy

ẏ = −sx + cxy , r ,K , s, c > 0.
(2)

The Volterra model is more stable than the Lotka-Volterra model. The
coexistence equilibrium is globally stable due to prey density dependence
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Rosenzweig and MacArthur suggest a hyperbolic functional response for a
more realistic model (M.L. Rosenzweig, R.H. MacArthur, Graphical
representation and stability conditions of predator-prey interactions, Am.
Nat. 97 (1963), pp. 209-223.). They considered the following model

ẋ = rx
(

1− x

K

)
− bxy

d + x

ẏ = −sy +
cbxy

d + x
.

(3)

Model (3) has two dynamic behavior types: stable equilibrium and stable
limit cycle. It is an improvement over the Lotka-Volterra model.
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M.R. Myerscough, M.J. Darwen, W.L. Hogarth, Stability, persistence
and structural stability in a classical predator-prey model, Ecol.
Modeling 89 (1980), pp. 31–42 deals with the following Rosenzweig
and MacArthur model

ẋ = rx
(

1− x

K

)
− byF (x)

ẏ = −sy + cyF (x), r ,K , b, s, c > 0,
(4)

and F (x) predator functional response (prey caught per predator per
unit time). F (x) is Holling II, Ivlev or Trigonometric.

Gunog Seo, Gail S. K. Wolkowicz, Sensitivity of the dynamics of the
general Rosenzweig–MacArthur model to the mathematical form of
the functional response: a bifurcation theory approach, J. Math.
Biol.https://doi.org/10.1007/s00285-017-1201-y 2018.
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Let f be a general predator functional response in (4) with usual
properties: f (0) = 0, f ′(x) > 0, f ′′(x) ≤ 0. Scaling and using a proper
substitution reduced the number of parameters to three, i.e., we have

u̇ = ru(1− u)− vf (u)

v̇ = −sv + avf (u).

By using the Euler forward scheme, we derive the following system.

un+1 = un + δ[run(1− un)− vnf (un)]

vn+1 = vn + δ[avnf (un)− svn].
(5)

We rescale the system (5).
Set

1 + δr = r̂ ,
1 + δr

δr
= α̂, δa = â,

s

â
= ŝ.

Then, system (5) becomes
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un+1 = r̂ un
(

1− un
α̂

)
− δvnf (un)

vn+1 = vn + âvn(f (un)− ŝ).
(6)

We introduce new variables ûn =
un
α̂
, v̂n =

δ

α̂
vn, and define

f (ûnα̂) = f̂ (ûn). Then, system (6) takes the following form

ûn+1 = r̂ ûn(1− ûn)− v̂n f̂ (ûn)

v̂n+1 = v̂n + âv̂n(f̂ (ûn)− ŝ).
(7)

By ignoring the hats, we obtain the following system with three parameters

un+1 = run(1− un)− vnf (un)

vn+1 = vn + avn(f (un)− s).
(8)

The right-hand side of the system (8) defines the map H : R2
+ → R2,

where

H(u, v) = (h1(u, v), h2(u, v)) = (ru(1− u)− vf (u), v + av(f (u)− s)).
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Preservation of positivity

Numerical simulations indicate that the first quadrant may not be
positively invariant with respect to the map H.

Define set D = {(u, v) ∈ R2
+ : H(u, v) ∈ R2

+}.
Set D = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ g1(u)} ⊂ R2

+, where

g1(u) =

{
g∗1 (u), 0 < u ≤ 1,
r

f ′(0)
, u = 0 and g∗1 (u) = r(1−u)u

f (u) .

Thus, two line segments bound the domain D and a continuous curve
g1(u) whose shape depends on the function f . Since the set D is a
bounded and closed subset of R2

+, it is a compact set.
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Figure: Invariant sets D and Ω ⊂ D where Ω = H(D),
X1 = H([0, 1/2]× {0}) = [0, r/4]× {0}, Y1 = H({0} × [0, r/f ′(0)]),
Y2 = H(LD−1), α(0) = (0, (1− as)r/f ′(0)), α(1/2) = (r/4, 0), and
LC 0

0 = α([um, 1/2]) (a) The case where q(t) 6= 0 for 0 < t < 1/2. (b) The case
where q(t) = 0 for exactly one t0, 0 < t0 < 1/2.
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Let
LD−1 = {(u, v) ∈ R2

+ : 0 ≤ u ≤ 1, v = g1(u)}.

Function g1 connects points (0, r/f ′(0)) and (1, 0).

The image of the curve LD−1 under the map H is

H (u, g1(u)) =


(

0,
r(1− u)u(1− as + af (u))

f (u)

)
, 0 < u ≤ 1,(

0,
r(1− as)

f ′(0)

)
, u = 0.

(9)
Thus, LD−1 is mapped into the positive v axis.
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We use the singularity theory and topology to prove the positive
invariance of set D.

For singularity theory, we refer to the classical work by H. Whitney, On
singularities of mappings of Euclidean spaces, mappings of the plane
into the plane, Annals of Mathematics 62(3) (1955), pp. 374–410.

We also refer to paper E. C. Balreira, S. Elaydi, S., R. Luis, Local
stability implies global stability for the planar Ricker competition
model, Discrete and Continuous Dynamical Systems - Series B 19(2)
(2014), pp. 323-351. http://doi.org/10.3934/dcdsb.2014.19.32.

Using this approach, we aim to understand the map H by considering
its regular and singular sets.
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Definitions from Whitney [13], Balreira et al. [1], Mira et
al. [2]

Let F be a differentiable map defined on an open subset U ⊂ R2.

The map F is considered regular at p if detJF (p) 6= 0; otherwise, it is
singular.

The p is a good point if either detJ(p) 6= 0 or ∇J(p) 6=0, where ∇ is
the gradient. A map is good if every point is good.

For a 2-dimensional continuous good map, the fundamental critical
curve (Mira [2]) is defined as
LC−1 = {p ∈ U : detJ(p) = 0 orF is not differentiable at p}.
Let φ be parametrization of the critical curve LC−1 through the point
p, with φ(0) = p. The point p is said to be fold if d

dt (F ◦ φ)(0) 6= 0. It

is cusp if d
dt (F ◦ φ)(0) = 0 and d2

dt2 (F ◦ φ)(0) 6= 0.
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Theorem (Theorem 15A,Whitney (12))

Let F : U → R2 be a differentiable map. If p ∈ U is a fold point, then
there are smooth coordinates (x1, y1) and (x2, y2) around p and F (p) such
that F takes the form x2 = x1 and y2 = y2

1 .

Theorem (Theorem 16A,Whitney (12))

F : U → R2 be a differentiable map. If p ∈ U is a cusp around p and
F (p), then there are smooth coordinates (x1, y1) and (x2, y2) such that F
takes the form x2 = x1 and y2 = y3

1 − x1y1.

Difference equations Cartagena, 28th-30th May 2025 13 / 52



The critical curve LC−1 is given by the following expression

LC−1 =

{
(u, v) ∈ R2

+ : 0 ≤ u ≤ 1/2, v =
r(1− 2u)(1− as + af (u))

(1− as)f ′(u)

}
.

The critical curve LC−1 is continuous and connects points (0, r/f ′(0))
and (1/2, 0).

LC0 = H(LC−1)

Parametrization of LC0

(H ◦ φ1)(u, v) = H(h1(t, g2(t)), h2(t, g2(t))) =

= (r(1− t)t − r(1−2t)f (t)(1−as+af (t))
(1−as)f ′(t) , r(1−2t)(af (t)−as+1)2

(1−as)f ′(t) ) .

α(t) = (H ◦ φ1)(t) = (α1(t), α2(t)).

All points (LC0) are fold except one which is cusp.(Fig.(a) fold;
Fig.(b) cusp).
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Let X = [0, 1]× {0} and Y = {0} × [0, r/f ′(0)].

The boundary of D is ∂D = X ∪ Y ∪ LD−1.

Y1 = H(Y ) = {0} × [0, (1− as)r/f ′(0)] ⊂ Y .

X1 = H(X ) = [0, r/4]× {0} ⊂ X for 0 < r < 4.

Define g3(u) =

 g∗3 (u), u 6= 0
r(1− as)

f ′(0)
, u = 0.

where

g∗3 (u) =
r(1− u)u(1− as + af (u))

f (u)
.

Y2 = H(LD−1) = {(0, g3(u))| for 0 ≤ u ≤ 1}.
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Lemma

Consider the map H associated with system (8) and

LC−1 =

{
(u, v) ∈ R2

+ : 0 ≤ u ≤ 1/2, g2(u) =
r(1− 2u)(1− as + af (u))

(1− as)f ′(u)

}
.

Then, we have ∂H(D) ⊆ H(∂D) ∪ LC0, where LC0 is the image of LC−1

under H, i.e., LC0 = H(LC−1).

The proof is similar to the proof of Lemma 4.5. in the paper of E. C.
Balreira, S. Elaydi, S., R. Luis.

The images of regular values cannot be on the boundary and any new
boundary points must be images of singular points.
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Let M = maxu∈[0,1] g3(u). The following lemma holds.

Lemma

There exists 0 ≤ um < 1/2, such that M = α2(um) = g3(um), and
g1(um) = g2(um), where α(t) = (H ◦ φ1)(t) = (α1(t), α2(t)) is given by
(10). Furthermore, Y2 = H(LD−1) = {0} × [0,M].

The number of common points between g1 and g2 is the same as the
number of the intersection of the curve α(t) with positive v−axis.

The latter points are images of the intersection points between curves
g1 and g2.
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The first theorem is proved, assuming that LC 0
0 = LC0 ∩ R2

+ is contained
in D.

Theorem

Let as < 1, 0 < r < 4, LC 0
0 = LC0 ∩ R2

+, and M ≤ r/f ′(0), where
M = g3(um) = maxu∈[0,1] g3(u). Suppose that there is at most one t0,
0 < t0 < 1/2, such that q(t0) = 0. If q′(t0) 6= 0, and q(t) 6= 0 for all
t 6= t0, and LC 0

0 ⊆ D, then, domain D is positive invariant under map H,
i.e., Ω = H(D) ⊆ D ⊂ R2

+.
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The next theorem proves that under certain conditions, LC 0
0 ⊆ D, which,

using the previous theorem, implies that D is positively invariant.

Theorem

Let as < 1, 0 < r < 4, and M ≤ r/f ′(0) where M = maxu∈[0,1] g3(u).
Suppose that there is at most one t0, 0 < t0 < 1/2, such that q(t0) = 0. If
q′(t0) 6= 0, and q(t) 6= 0 for all t 6= t0, then LC 0

0 ⊆ D, and D is a
positively invariant set under map H, i.e., Ω = H(D) ⊆ D ⊂ R2

+.
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Equilibrium points and linearized stability

Lemma

For system (8), the following results hold.

(a) If ū is solution of equation f (ū) = s and ū ≥ (r − 1)/r , or f (ū) = s
has no solution, then there is no interior equilibrium, and there are
only extinction equilibrium E0 = (0, 0) and exclusion equilibrium
E1 = ((r − 1)/r , 0).

(b) If ū is positive solution of f (ū) = s and 0 ≤ ū < (r − 1)/r , 1 < r < 4,
then there are three equilibrium points: extinction E0 = (0, 0),
exclusion E1 = ((r − 1)/r , 0), and unique coexistence equilibrium

Ē (ū, v̄) =

(
ū,

ū (r − 1− r ū)

s

)
.
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Lemma

The equilibrium point E0 is

(a) locally asimptotically stable if r < 1;

(b) non-hyperbolic if r = 1;

(c) a saddle point if r > 1.

Theorem

Assume that r ∈ (0, 1]. Then, E0 is globally asymptotically stable for
system (8).
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Lemma
Equilibrium point E1 is

(a) a locally asymptotically stable if 1 < r < 3 and f

(
r − 1

r

)
< s.

(b) repeller if 3 < r < 4 and f

(
r − 1

r

)
> s.

(c) non-hyperbolic if r = 3 or s = f

(
r − 1

r

)
. Additionally, period-doubling bifurcation with a stable two-cycle occurs at

r = 3 for s > f

(
2

3

)
, while transcritical bifurcation occurs at s = f

(
r − 1

r

)
when r 6= 3. Moreover, for r = 3 and

s > f

(
2

3

)
, Ē1 is stable; for r 6= 3 and s = f

(
r − 1

r

)
, Ē1 is unstable.

(d) a saddle point if

(
1 < r < 3 and f

(
r − 1

r

)
> s

)
or

(
3 < r < 4 and f

(
r − 1

r

)
< s

)
.

There are stable and unstable manifolds that intersect at Ē1. In the first case, the local stable and unstable manifolds are

Ws
1 = {(u, v) : 0 < u <∞, v = 0},

Wu
1 = {(u, v) ∈ R+ : u =

r − 1

r
+

f
(

1− 1
r

)
1− r + as − af

(
1− 1

r

) v + β1v
2 + β2v

3 + O(|v|4)},

where β1, β2 are given by (??), while in the second case,Ws
2 =Wu

1 andWu
2 =Ws

1 .

Difference equations Cartagena, 28th-30th May 2025 22 / 52



Bifurcation diagram and Lyapunov exponents

A dynamically interesting case in the above Lemma arises in
statement (c) when period-doubling and transcritical bifurcations
occur around Ē1.

As r approaches the bifurcation value of 3, we show that one of the
Lyapunov exponents for period-doubling bifurcation equals zero, and
the other is negative.

Theorem

For 1 < r ≤ 3, and s > f ((r − 1)/r), when r is near 3, the MLE at (u0, 0)
near Ē1 is λ1 = ln |2− r |

Particularly, we have

lim
r→3

λ1(a, r , s) = 0 and lim
r→3

λ2(a, r , s) = ln

∣∣∣∣1− as + af

(
2

3

)∣∣∣∣ < 0.
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Figure: Period-doubling bifurcation and Maximum Lyapunov exponents for
r0 = 3, r ∈ (2.8, 3.8), a = 0.2, s = 1.8, aH = 2.0, bH = 1.0, x0 = 0.4, y0 = 0.2
and f (u) = 2u

u+1 Holling II predator functional response.

Difference equations Cartagena, 28th-30th May 2025 24 / 52



Figure: Transcritical bifurcation and Maximum Lyapunov exponents at s0 = 0.75,
s ∈ (0.01, 0.82), r = 2.5, a = 0.7, aH = 2.0, bH = 1.0, x0 = 0.2, y0 = 0.2 and
f (u) = 2u

u+1 Holling II predator functional response.
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Attractivity results at the boundary equilibrium

We prove the following lemmas that we use to obtain global asymptotic
stability results for the boundary equilibrium point.

Lemma

Let (un, vn) denote the solution of the system (8) with the initial condition

(u0, v0) ∈ D. If r ∈ (1, 2], then lim sup
n→∞

un ≤
r − 1

r
. Moreover, if f

(
r − 1

r

)
< s,

then lim
n→∞

(un, vn) = E1.

Lemma

Assume 2 < r < 3, and f (r/4) < s. Then, limn→∞ vn = 0, and for all ε > 0, such

that 0 < ε < min{(r − 2)/4, (4r2 − r3 − 8)/8}, there exists n0, such that for all

n > n0, we have run(1− un)− ε ≤ un+1 ≤ run(1− un). Furthermore, if

0 < un0 <
1

2
, then there exists n1 > n0, with

1

2
< un1 <

r +
√

(r − 2− 2ε) r

2r
.
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Lemma

Let (un, vn) denote the solution of system (8) with the initial condition
(u0, v0) ∈ D. If 2 < r < 3 and f (r/4) < s, then lim

n→∞
(un, vn) = E1.

The next result is global.

Theorem

Assume that(
1 < r ≤ 2 and f

(
r − 1

r

)
< s

)
or
(

2 < r < 3 and f
( r

4

)
< s
)
.

Then, the boundary equilibrium is globally asymptotically stable.

Difference equations Cartagena, 28th-30th May 2025 27 / 52



Stability of the coexistence equilibrium point

Lemma

Assume 1 < r < 4 and 0 < as < 1. Then, the equilibrium point (ū, v̄) is

(i) a saddle point if a <
2(1 + r − 2r ū)

ū (r ū − r + 1) f ′ (ū)
+

2

s
.

(ii) locally asymptotically stable if
2(1 + r − 2r ū)

ū (r ū − r + 1) f ′ (ū)
+

2

s
< a <

r − 2r ū − 1

ū (r ū − r + 1) f ′ (ū)
+

1

s
.

(iii) a repeller if a >
2(1 + r − 2r ū)

ū (r ū − r + 1) f ′ (ū)
+

2

s
and a >

r − 2r ū − 1

ū (r ū − r + 1) f ′ (ū)
+

1

s
.

(iv) a non-hyperbolic equilibrium if and only if a =
2(1 + r − 2r ū)

ū (r ū − r + 1) f ′ (ū)
+

2

s
or

a =
r − 2r ū − 1

ū (r ū − r + 1) f ′ (ū)
+

1

s
and |ū (r ū − r + 1) f ′ (ū)+s (−2r ū + r + 1) | < 2s.
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Period-doubling bifurcation and Neimark-Sacker
bifurcation at the interior equilibrium

We show the occurrence of the period-doubling bifurcation at the
unique interior equilibrium of system (8), taking a as a bifurcation
parameter. Due to the huge expressions, we skip them here.

We use the results from S. Wiggins, Introduction to applied nonlinear
dynamical systems and chaos. Second edition. Texts in Applied
Mathematics, 2. Springer-Verlag, New York, 2003, pages 513—516.
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Lemma
Assume that Tr(A) 6= 0, Tr(A) 6= −1, s > 0, r > 0, 0 < ū < (r − 1)/r, where ū is positive solution of the equation
f (ū) = s. Let a0 > 0 such that

f ′ (ū) =
s (−2r ū + r − 1)

ū (a0s − 1) (r (ū − 1) + 1)
(10)

and ∣∣∣∣ a0s (−2r ū + r + 1)− 2

a0s − 1

∣∣∣∣ < 2. (11)

Then, H̃ has fixed point at (0, 0), and conjugate complex eigenvalues µ(a), µ̄(a) of Jacobian matrix J
H̃a

(0, 0) for a close a0

with modulus one at a = a0, where

µ(a0) =
a0s (−2r ū + r + 1)− 2 + i∆

2a0s − 2

and ∆ =
√
−a0s (1 + r (−1 + 2ū)) (4 + a0s (−3− r + 2r ū)) and |µ(a0)| = 1. Moreover, µ satisfies the following

(a) µ(a0)k 6= 1 for k = 1, 2, 3, 4.

(b)

d(a0) =
d

da
|µ(a)|

∣∣∣∣
a=a0

=
s (r (2ū − 1) + 1)

2(a0s − 1)
. (12)
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Lemma (cont.)
(c) Eigenvectors associated to the µ are

q = q(a0) =

(
a0s (−1 + r − 2r ū) + i∆

2a0 (1− r + 2r ū)
, 1

)

and

p = p(a0) =

(
−

ia0 (1 + r (−1 + 2ū))

∆
,

1

2
−

ia0s (1 + r (−1 + 2ū))

2∆

)
,

such that Aq = µ(a0)q, pA = µ(a0)p and pq = 1.
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We compute an approximation of the closed invariant curve following the
procedure in K. Murakami, The invariant curve caused by Neimark–Sacker
bifurcation. Dynamics of Continuous, Discrete and Impulsive Systems,
9(1)(2002), 121-132. We also determine the explicit form of the first
Lyapunov coefficient.

Theorem
Assume that all assumptions of Lemma 17 hold. Then the following holds:

(a) If α(a0) < 0 and d(a0) > 0 (d(a0) < 0), then there is a neighborhood U of the (ū, v̄) and a δ > 0 such that for
|a − a0| < δ and (u0, v0) ∈ U , then ω-limit set of (u0, v0) is (ū, v̄) if a < a0 (a > a0) and belongs to a closed

invariant C1 curve Γ(a) encircling the (ū, v̄) if a > a0 (a < a0). Furthermore, Γ(a0) = {(ū, v̄)}.
(b) If α(a0) > 0 and d(a0) > 0 (d(a0) < 0), then there is a neighborhood U of the (ū, v̄) and a δ > 0 such that for
|a − a0| < δ and (u0, v0) ∈ U , then α-limit set of (u0, v0) is the (ū, v̄) if a > a0 (a < a0) and belongs to a closed

invariant C1 curve Γ(a) encircling the (ū, v̄) if a < a0 (a > a0). Furthermore, Γ(a0) = {(ū, v̄)}.
Assume α(a0) 6= 0 and a = a0 + δ where δ is a sufficient small parameter. If (ū, v̄) is fixed point of H then invariant curve
Γ(a) can be approximated by

(
u
v

)
≈ (ū, v̄) + 2ρ0Re

(
qe iθ

)
+ ρ

2
0

(
Re
(

K20e
2iθ
)

+ K11

)
, θ ∈ R (13)

where

ρ0 =

√
−

d(a0)

α(a0)
δ.
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Permanence of the system

The following definition of permanence is from R. Kon and Y.
Takeuchi, Permanence of host-parasitoid system, Nonlinear Analysis
47 (2001), pp. 1383-1393.

Definition

System (8) is permanent (for ∂X ) if there is a compact set M ⊂ X such
that the minimum distance between M and ∂X is positive, and for every
initial value in intX the orbits enter and remain in M.

We use the method of average Lyapunov functions developed in the
V. Hutson, A theorem on average Liapunov functions, Monatshefte
für Mathematik 98 (1984,) pp. 267–275.
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Theorem (Hutson)

Consider the system
Zn+1 = F (Zn),Zi ∈ Rn

+, i ≥ 0.

Assume that X is compact and that S is a compact subset of X with an empty
interior. Let S and X \ S be forward invariant. Suppose that there is a continuous
function P : X → R+ which satisfies the following conditions

(a) P(Z ) = 0⇔ Z ∈ S

(b) sup
n≥0

lim inf
Z0→Z ,Z0∈X\S

P(F n(Z0))

P(Z0)
> 1 (Z ∈ S)

Then there is a compact forward invariant set M with d(M,S) > 0 which is such

that every orbit in X \ S enter and remain in M.
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Corollary (Hutson)

The conclusion of the Theorem (Hutson) remains true if, instead of (b) it

is assumed that sup
n≥0

lim inf
Z0→Z ,Z0∈X\S

P(F n(Z0))

P(Z0)
>

{
1, Z ∈ Ω(S),
0, Z ∈ S ,

where Ω(S)

is the omega limit set of S .

For compact set Ω1 ⊂ D, let S1 = {(u, v) ∈ Ω1|u = 0} and

S2 = {(u, v) ∈ Ω1|v = 0}. H(Si ) ⊆ Si , and H(Ω1 \ Si ) ⊆ Ω1 \ Si , for i = 1, 2.

Define the following continuous functions Pi : X → R+(i = 1, 2) by

P1((u, v)) = u and P2((u, v)) = v . Put

σi (Z ) = sup
n≥0

lim inf
Z0→Z ,Z0∈Y\Si

Pi (H
n(Z0))

Pi (Z0)
for i = 1, 2

Theorem

Assume that 1 < r < 4. System (8) is permanent if the following condition
holds: σ2(Z ) > 1 for any Z ∈ Ω(S2 \ {(0, 0)}).
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Theorem

If 1 < r < 3 and f

(
r − 1

r

)
> s, then system (8) is permanent.

Lemma

Assume that 3 < r < 4, u0 > 0 and v0 = 0. Let {(ui , 0)}∞i=0 be a solution
of the (8). Then, there exist ρ > 0, such that for all u0 > 0, there is
n0 = n0(u0) > 0 with ρ < un < r/4 for all n > n0. Furthermore, if
ρ < u0 < r/4, then ρ < un < r/4 for all n ≥ 0.
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We use Lemma 2.4

Lemma (Hofbauer et al.)

Assume that xi > 0(1 ≤ i ≤ q). Suppose that there are real numbers b > 0 and

b′, and a sequence (kj)→∞ such that b < (x · kj)i < b′(1 ≤ i ≤ q, j ≥ 1). Then

there are a subsequence, again denoted by (kj), and an equilibrium point x∗ such

that limj→∞ x̄(kj) = x∗.

in J. Hofbauer, V. Hutson, and W. Jansen, Coexistence for systems

governed by difference equations of Lotka-Volterra type, J. Math. Biol. (25)

(1987), pp. 553-570, to prove the following result.

Lemma

Let {(ui , 0)}∞i=0 be a solution of system (8) for u0 > 0 and v0 = 0. Suppose that

there are real numbers ρ1 > 0 and ρ2, such that ρ1 ≤ ui ≤ ρ2 for all i ≥ 0. Then,

there exists subsequence {ni} such that lim
ni→∞

∑ni−1
j=0 ln(1− uj)

ni
= − ln r .
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We prove the next lemma.

Lemma

Assume that 0 < ρ < r/4 and 1 < r < 4. Let ξ and η are solution of the system

ξ ln(1− ρ)− η = ln(1− as + af (ρ))

ξ ln
(

1− r

4

)
− η = ln

(
1− as + af

( r
4

))
.

Then if f ′′(u) < 0 for u ∈ [ρ, r/4] then ln(1− as + af (u)) ≥ ξ ln(1− u)− η for
ρ ≤ u ≤ r/4 where

ξ =
ln(af (ρ)− as + 1)− ln

(
af
(
r
4

)
− as + 1

)
ln(1− ρ)− ln

(
1− r

4

)
η =

ln
(
1− r

4

)
ln(af (ρ)− as + 1)− ln(1− ρ) ln

(
af
(
r
4

)
− as + 1

)
ln(1− ρ)− ln

(
1− r

4

)
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We prove the following permanence result.

Theorem

Assume that 3 < r < 4 and ξ ln r + η < 0 where ξ and η are from Lemma
28. Then, the system (8) is permanent.
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Numerical examples and simulations

We consider system (8) with hyperbolic predator functional response
f (u) = aT tanh(bTu), where aT , bT > 0.

We choose parameters aT , bT , a, s, and r such that as < 1, and set
D must be positively invariant.

In this example, the set D is

D =

{
(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ − r(u − 1)u coth (bTu)

aT

}
.
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For the set D to be positively invariant, the following condition must
hold

M ≤ r

aTbT
, (14)

and there must be at most one t0, 0 < t0 < 1/2, such that q(t0) = 0,
q′(t0) 6= 0, where

q(t) = 2aTbT sech2 (tbT ) (a (−2taTbT + aTbT + s)− 1)

+ 2aTbT tanh (tbT ) sech2 (tbT ) (2t(as − 1)bT − a (aT + sbT ) + bT ) ,

and

q′(t) = 2aTb
2
T sech4 (tbT ) (4t(as − 1)bT − 2asbT − 3aaT + 2bT )

+ 2(2t − 1)aTb
3
T sech4 (tbT ) ((1− as) cosh (2tbT ) + aaT sinh (2tbT )) .
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We find the interior equilibrium point in D

Set D is positively invariant only if the following conditions hold

0 < s < aT tanh

(
(r − 1)bT

r

)
and 1 < r < 4. (15)
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Figure: Closed invariant set D for aT = 0.99, bT = 1.48, and (a)
r = 3.5, s = 0.3, (b) r = 3.9, s = 0.7.
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We take the values of parameters aT , and bT from Gregor F
Fussmann, Bernd Blasius, Community response to enrichment is
highly sensitive to model structure, Biol. Lett. 1 (2005), pp. 9-12.
doi: 10.1098/rsbl.2004.0246., i.e., aT = 0.99, bI = 1.48.

We also refer to the article Gunog Seo, Gail S. K. Wolkowicz,
Sensitivity of the dynamics of the general Rosenzweig–MacArthur
model to the mathematical form of the functional response: a
bifurcation theory approach, J. Math.
Biol.https://doi.org/10.1007/s00285-017-1201-y 2018. Other
parameters are r = 3.5, s = 0.3.

For the chosen values, the set D becomes

D = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ −3.53535(u − 1)u coth(1.48u)} ,

and M = 2.05981, r
f ′(0) = r

aTbT
= 2.38875, t0 = 0.255533,

q′(t0) = −13.8511 6= 0.
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Figure: Trajectories (red, green, blue and orange) for aT = 0.99, bT = 1.48, s = 0.3, r = 3.5 and (i) a = 0.01 (ii)

a = 1.13 (iii) a = a0 = 1.272554647499 (iv) a = 1.4 (v) a = 1.82 (vi) a = 1.90 (vii) a = 1.93 (viii) a = 1.57 (ix) a = 2.07

(x) a = 2.11 (xi) a = 2.17 and (xii) a = 2.34.
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Figure: Bifurcation diagrams and Maximum Lyapunov exponents where
aT = 0.99, bT = 1.48 and f (u) = 0.99 tanh(1.48u) Hyperbolic predator
functional response for a ∈ (1.0, 2.4),and s = 0.3, r = 3.5 x0 = 0.3, y0 = 0.2.

Difference equations Cartagena, 28th-30th May 2025 46 / 52



Take the values of parameters aT = 0.99, bI = 1.48, r = 3.9, and
s = 0.7.

For the chosen values, the set D becomes

D = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ −3.93939(u − 1)u coth(1.48u)} ,

and M = 1.52563, r
f ′(0) = r

aTbT
= 2.66175, t0 = 0.252524,

q′(t0) = −9.06119 6= 0.
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Figure: Trajectories (red, green, blue and orange) for
aT = 0.99, bT = 1.48, s = 0.7, r = 3.9 and (a) a = 0.01 (b) a = a0 = 0.83111
and (c) a = 1.10.
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Figure: Bifurcation diagrams and Maximum Lyapunov exponents where
aT = 0.99, bT = 1.48 and f (u) = 0.99 tanh(1.48u) Hyperbolic predator
functional response for a ∈ (0.01, 1.1), and s = 0.7, r = 3.9 x0 = 0.60, y0 = 0.49.
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GRACIAS POR SU ATENCION
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