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Motivation

(2019) Habitat fragmentation has become one of the main
drivers of species extinction and biodiversity loss.
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Effects of dispersal on population fitness

How does increased connectivity affect...?

• Persistence

• Synchrony

• Stability

• ...

Recently, there is increasing interest in the effect on

• Total biomass

We study the simplest network of two patches that behave as
sources when isolated.
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Experimental results

1 (Ives et al., 2004) Increasing dispersal always increases total
biomass for yeast-like fungus.

2 (Aström and Pärt,2013) Increasing dispersal always
decreases total biomass for oribatid mites.

3 (Dey et al., 2014) Dispersal has no significant effect on the
total biomass regardless of the dispersal intensity for fruit flies.

4 (Vortkamp et al., 2022) Low dispersal increases total biomass
but high dispersal decreases it for Escherichia coli.
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Symmetric dispersal
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Models for symmetric dispersal

Continuous time

Freedman and Waltman (1977):

Maps fA and fB are the logistic maps

fi (x) = rix

(
1− x

Ki

)
,

and the dispersal rate is ϵ ∈ [0,∞).
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Gao D, Lou Y (2022) Total biomass of a single population in
two-patch environments. Theor Popul Biol 146:1–14.
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Models for symmetric dispersal

Discrete time

Reproduction/Dispersal (Gadgil, 1971):{
xt+1 = (1−m)fA(xt) +mfB(yt),

yt+1 = mfA(xt) + (1−m)fB(yt),
(2)

Dispersal/Reproduction{
xt+1 = fA((1−m)xt +myt),

yt+1 = fB(mxt + (1−m)yt),
(3)

Maps fA and fB are the Beverton-holt maps

fi (x) =
rix

1 + ζix
,

where ri > 1 (sources), ζi = (ri − 1)/Ki is the strength of
intraspecific competition, and m ∈ [0, 1] is the dispersal rate.
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To our knowledge, only 2 previous works have addressed the
considered questions in discrete time.

1 Gadgil (1971) studied model (2) with quadratic local
dynamics and proved increasing dispersal always decreases
total biomass.

2 Franco and Ruiz-Herrera (2015) studied model (2) with
Beverton-Holt and Ricker local dynamics. They showed...

• Theoretically: for m → 0+, increasing dispersal always
increases total biomass.

• Numerically: unique response scenario (hump-shaped).
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Why these contradictory results?

Gao & Lou (2022) results vere obtained for heterogeneous
patches.

This was NOT true for the previous works:

• Gadgil (1971) assumed a common growth rate in the two
patches, rA = rB .

• Franco & Ruiz-Herrera (2015) implicitly assumed a common
strength of intraspecific competition in the two patches
since they used B-H maps in the form

fi (x) =
rix

1 + x
,

which implies ζA = ζB = 1.
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Extending the results in discrete time

The order of events doesn’t matter

Reproduction/Dispersal:{
xt+1 = (1−m)fA(xt) +mfB(yt),

yt+1 = mfA(xt) + (1−m)fB(yt),
(2)

Dispersal/Reproduction{
xt+1 = fA((1−m)xt +myt),

yt+1 = fB(mxt + (1−m)yt),
(3)

Proposition 1

For B-H local dynamics, systems (2) and (3) are topologically
equivalent.
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Extending the results in discrete time

Stability

Lemma 1

Assume KA = KB . Then, connecting the two patches with any
dispersal rate m ∈ (0, 1] has no effect on the asymptotic total
biomass.

In what follows, we assume KA ̸= KBKA ̸= KBKA ̸= KB .

Proposition 2 (Application of Kirkland, S., Li, C.K., & Schreiber, S.J.
SIAM J. Appl. Math. 2006)

Assume KA ̸= KB . For each m ∈ [0, 1], system (2) has a fixed
point (x(m), y(m)) ∈ R2

++ such that

lim
t→+∞

(xt , yt) = (x(m), y(m))

for any initial condition (x0, y0) ∈ R2
+ \ {(0, 0)}.
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Extending the results in discrete time

(Asymptotic) total biomass

By Lemma 3, for each dispersal rate m ∈ [0, 1], we can define the
(asymptotic) total biomass as x(m) + y(m).

To study the effect of dispersal on the total biomass, we consider
H : [0, 1] → R with

H(m) := x(m) + y(m)− (KA + KB).{
H(m) > 0 → connecting patches is beneficial,

H(m) < 0 → connecting patches is detrimental.

The possible response scenarios depend on two aspects:

1 Shift points (H(m) = 0 for m ∈ (0, 1)).

2 Monotonicity of H.
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Extending the results in discrete time

Shift points (zeros of H in (0, 1))

Define

m̃ :=
KAKB(rA − 1)(rB − 1)(rA − rB)

(KA(rB − 1) + KB(rA − 1))(KArA(rB − 1)− KB rB(rA − 1))
.

Proposition 3

Assume KA ̸= KB . If rA = rB , KArA(rB − 1) = KB rB(rA − 1), or
m̃ /∈ (0, 1], then H has no zeros in (0, 1). Otherwise, H has one
zero in (0, 1), m = m̃.

At most one shift point!!

beneficial→detrimental or detrimental→beneficial
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Extending the results in discrete time

Derivative of H at m = 0+

Proposition 4

Assume KA ̸= KB . Then,

H ′(0+) =
(rA − rB)(KA − KB)

(rA − 1)(rB − 1)
(either ≥ 0 or ≤ 0).

Remark: Franco & Ruiz-Herrera (2015) considered ζi = 1, i.e.,
Ki = ri − 1, and in that case

H ′(0+) =
(rA − rB)

2

(rA − 1)(rB − 1)
≥ 0.
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Extending the results in discrete time

Monotonicity of H

Consider

a := (rB − 1)(KA
√
rA(rB − 1) + KB

√
rB(rA − 1)),

b := KB(rB − 1)(2KA
√
rA − (KA − KB + (KA + KB)rA)

√
rB),

c := −KAK
2
B(

√
rA −

√
rB)(

√
rArB − 1).

Lemma 2

Equation ay2 + by + c = 0 has two simple real roots.

Define y∗ as the largest root of ay2 + by + c = 0 and

x∗ :=
KA(KB(

√
rA −√

rB) +
√
rA(rB − 1)y∗)

KB
√
rB(rA − 1)

.
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Extending the results in discrete time

H is either monotonic or hump-shaped...

Proposition 5

Assume KA ̸= KB . Then, fA(x
∗) ̸= fB(y

∗), and if we define

mmax :=
y∗ − fB(y

∗)

fA(x∗)− fB(y∗)
,

then the following holds:

1 If mmax /∈ (0, 1), then H is strictly monotonic in [0, 1].

2 If mmax ∈ (0, 1), then H is strictly increasing in [0,mmax) and
strictly decreasing in (mmax, 1].
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Extending the results in discrete time

Response scenarios
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Extending the results in discrete time

Theorem 1

Assume KA ̸= KB .

1 If
√
rA(rB−1)√
rB(rA−1) ≤

KB
KA

< 1, then H is positive in (0, 1). Moreover,

(i) If mmax /∈ (0, 1), then H is strictly increasing in [0, 1]
(monotonically beneficial).

(ii) If mmax ∈ (0, 1), then H is strictly increasing in [0,mmax) and
strictly decreasing in (mmax, 1] (unimodally beneficial).

2 If KB
KA

<
√
rA(rB−1)√
rB(rA−1) , then 0 < mmax < m̃ < 1. Moreover, H is

positive and strictly increasing in (0,mmax), positive and
strictly decreasing in (mmax, m̃), and negative and strictly
decreasing in (m̃, 1] (beneficial turning detrimental).

3 If KB
KA

> 1, then H is negative and strictly decreasing in [0, 1]
(monotonically detrimental).
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Asymmetric dispersal
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Studying the effect of dispersal asymmetry

Motivation
• Asymmetric dispersal naturally appears in many populations
(e.g., wind carrying seeds in a particular direction).

• Assume that the response to symmetric dispersal is

Modifying this scenario implies modifying ri or Ki since
symmetric dispersal has a fixed response for ri and Ki given.
This is unfeasible in most cases.

Can induced asymmetry modify the scenario?
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Models for asymmetric dispersal

Assume a symmetry level s ∈ [0, 1] (s = 1 symmetry, s = 0 total
asymmetry).

Focus on model (4) and define

s1 :=
KB(rA − 1)(KArA(rB − 1) + KB rB(rA − 1))

KArA(rB − 1)(KA(rB − 1) + KB(rA − 1))
,

s2 :=
y∗

fA(x∗)
, and s3 :=

KB

KA
.
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Asymmetry does not yield new response scenarios

Theorem 2

The following is true for model (4) (restrict mobility from A to
B):

1 If rA > rB , then s3 < s2 < s1 and the following holds:

1 If s < s3, then H is negative and strictly decreasing in (0, 1]
(monotonically detrimental).

2 If s3 < s ≤ s2, then H is positive and strictly increasing in
(0, 1] (monotonically beneficial).

3 If s2 < s ≤ s1, then u∗ ∈ (0, 1). Moreover, H is positive and
strictly increasing in (0, u∗], and positive and strictly
decreasing in [u∗, 1) (unimodally beneficial).

4 If s > s1, then 0 < u∗ < m∗ < 1. Moreover, H is positive and
strictly increasing in (0, u∗], positive and strictly decreasing in
[u∗,m∗), and negative and strictly decreasing in (m∗, 1]
(beneficial turning detrimental).
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Asymmetry does not yield new response scenarios

Theorem 2

2 If rA < rB , then s1 < s2 < s3 and the following holds:

1 If s < s1, then 0 < u∗ < m∗ < 1. Moreover, H is positive and
strictly increasing in (0, u∗], positive and strictly decreasing in
[u∗,m∗), and negative and strictly decreasing in (m∗, 1]
(beneficial turning detrimental).

2 If s1 ≤ s < s2, then u∗ ∈ (0, 1). Moreover, H is positive and
strictly increasing in (0, u∗], and positive and strictly
decreasing in [u∗, 1) (unimodally beneficial).

3 If s2 ≤ s < s3, then H is positive and strictly increasing in
(0, 1] (monotonically beneficial).

4 If s > s3, then H is negative and strictly decreasing in (0, 1]
(monotonically detrimental).

3 If rA = rB , then H is negative and strictly decreasing in (0, 1].
(monotonically detrimental).
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Changing the scenario: One way or another...

From Theorem 2, for model (4) we observe the following:

• rA = rB . The only possible scenario is monotonically
detrimental for all values of s ∈ [0, 1].

• rA ̸= rB Varying asymmetry when restricting mobility from A
to B may yield different scenarios, but NOT always:
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Changing the scenario: One way or another...

We can also restrict mobility from B to A!!{
xt+1 = (1−m · s)fA(xt) +mfB(yt),

yt+1 = (m · s)fA(xt) + (1−m)fB(yt),
(4)

{
xt+1 = (1−m)fA(xt) + (m · s)fB(yt),
yt+1 = mfA(xt) + (1−m · s)fB(yt),

(5)

Proposition 6

Assume rA ̸= rB . Then, the four response scenarios listed in
Theorem (2) can be obtained by restricting mobility from A
to B or from B to A. That is, for each of the four scenarios there
exists a value s ∈ (0, 1] such that either model (4) or model (5)
shows the scenario.
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