Asymmetric dispersal

Discrete population models and dispersal: Part I

Juan Segura

EADA Business School

May 28, 2025

Progress on Difference Equations. May 28-30, 2025 Cartagena (Spain)

Asymmetric dispersal 00000000

Joint work with

Daniel Franco UNED Spain Frank Hilker Carolin Grumbach Femke Reurik

Univ. Osnabrück, Germany

Introduction

Symmetric dispersal

Asymmetric dispersal 00000000

Motivation

(2019) Habitat fragmentation has become one of the main drivers of species extinction and biodiversity loss.

Introduction

Symmetric dispersal

Asymmetric dispersal 00000000

Motivation

(2019) Habitat fragmentation has become one of the main drivers of species extinction and biodiversity loss.

Asymmetric dispersal 00000000

Effects of dispersal on population fitness

How does increased connectivity affect...?

- Persistence
- Synchrony
- Stability
- =

Recently, there is increasing interest in the effect on

• Total biomass

We study the <u>simplest network</u> of two patches that behave as <u>sources</u> when isolated.

Experimental results

- (lves et al., 2004) Increasing dispersal always increases total biomass for yeast-like fungus.
- (Aström and Pärt,2013) Increasing dispersal always decreases total biomass for oribatid mites.
- Object (Dey et al., 2014) Dispersal has no significant effect on the total biomass regardless of the dispersal intensity for fruit flies.
- ④ (Vortkamp et al., 2022) Low dispersal increases total biomass but high dispersal decreases it for *Escherichia coli*.

Asymmetric dispersal

Symmetric dispersal

Discrete population models and dispersal: Part I

Models for symmetric dispersal

Continuous time

Freedman and Waltman (1977):

$$\begin{array}{c}
\stackrel{A}{\overbrace{}} & \stackrel{B}{\overbrace{}} & \stackrel{B}{\overbrace{}} & \stackrel{B}{\overbrace{}} & \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f_A(x) - \epsilon(x - y), \\ \frac{\mathrm{d}y}{\mathrm{d}t} = f_B(y) - \epsilon(y - x), \end{cases} (1)$$

Maps f_A and f_B are the logistic maps

$$f_i(x) = r_i x \left(1 - \frac{x}{K_i}\right),$$

and the dispersal rate is $\epsilon \in [0, \infty)$.

Gao D, Lou Y (2022) Total biomass of a single population in two-patch environments. Theor Popul Biol 146:1–14.

Models for symmetric dispersal

Discrete time

Reproduction/Dispersal (Gadgil, 1971):

$$\begin{cases} x_{t+1} = (1-m)f_A(x_t) + mf_B(y_t), \\ y_{t+1} = mf_A(x_t) + (1-m)f_B(y_t), \end{cases}$$
(2)

Dispersal/Reproduction

$$\begin{cases} x_{t+1} = f_A((1-m)x_t + my_t), \\ y_{t+1} = f_B(mx_t + (1-m)y_t), \end{cases}$$
(3)

Maps f_A and f_B are the **Beverton-holt maps**

$$f_i(x)=\frac{r_ix}{1+\zeta_ix},$$

where $r_i > 1$ (sources), $\zeta_i = (r_i - 1)/K_i$ is the strength of intraspecific competition, and $m \in [0, 1]$ is the dispersal rate.

To our knowledge, **only 2 previous** works have addressed the considered questions in discrete time.

 Gadgil (1971) studied model (2) with quadratic local dynamics and proved increasing dispersal always decreases total biomass. To our knowledge, **only 2 previous** works have addressed the considered questions in discrete time.

- Gadgil (1971) studied model (2) with quadratic local dynamics and proved increasing dispersal always decreases total biomass.
- Pranco and Ruiz-Herrera (2015) studied model (2) with Beverton-Holt and Ricker local dynamics. They showed....
 - Theoretically: for $m \rightarrow 0^+$, increasing dispersal always increases total biomass.
 - Numerically: unique response scenario (hump-shaped).

Discrete population models and dispersal: Part I

Why these contradictory results?

Gao & Lou (2022) results vere obtained for heterogeneous patches.

This was NOT true for the previous works:

- Gadgil (1971) assumed a common growth rate in the two patches, $r_A = r_B$.
- Franco & Ruiz-Herrera (2015) implicitly assumed a common strength of intraspecific competition in the two patches since they used B-H maps in the form

$$f_i(x)=\frac{r_ix}{1+x},$$

which implies $\zeta_A = \zeta_B = 1$.

The order of events doesn't matter

Reproduction/Dispersal:

$$\begin{cases} x_{t+1} = (1-m)f_A(x_t) + mf_B(y_t), \\ y_{t+1} = mf_A(x_t) + (1-m)f_B(y_t), \end{cases}$$
(2)

Dispersal/Reproduction

$$\begin{cases} x_{t+1} = f_A((1-m)x_t + my_t), \\ y_{t+1} = f_B(mx_t + (1-m)y_t), \end{cases}$$
(3)

Proposition 1

For B-H local dynamics, systems (2) and (3) are topologically equivalent.

Stability

Lemma 1

Assume $K_A = K_B$. Then, connecting the two patches with any dispersal rate $m \in (0, 1]$ has no effect on the asymptotic total biomass.

In what follows, we assume $K_A \neq K_B$.

Proposition 2 (Application of Kirkland, S., Li, C.K., & Schreiber, S.J. SIAM J. Appl. Math. 2006)

Assume $K_A \neq K_B$. For each $m \in [0, 1]$, system (2) has a fixed point $(x(m), y(m)) \in \mathbb{R}^2_{++}$ such that

$$\lim_{t\to+\infty}(x_t,y_t)=(x(m),y(m))$$

for any initial condition $(x_0, y_0) \in \mathbb{R}^2_+ \setminus \{(0, 0)\}.$

(Asymptotic) total biomass

By Lemma 3, for each dispersal rate $m \in [0, 1]$, we can define the (asymptotic) **total biomass** as x(m) + y(m).

To study the effect of dispersal on the total biomass, we consider $H\colon [0,1]\to \mathbb{R}$ with

$$H(m) \coloneqq x(m) + y(m) - (K_A + K_B).$$

 $\begin{cases} H(m) > 0 \rightarrow \text{ connecting patches is beneficial,} \\ H(m) < 0 \rightarrow \text{ connecting patches is detrimental.} \end{cases}$

The possible response scenarios depend on two aspects:

1 Shift points
$$(H(m) = 0 \text{ for } m \in (0, 1))$$
.

2 Monotonicity of H.

Shift points (zeros of H in (0, 1))

Define

$$\tilde{m} := \frac{K_A K_B (r_A - 1) (r_B - 1) (r_A - r_B)}{(K_A (r_B - 1) + K_B (r_A - 1)) (K_A r_A (r_B - 1) - K_B r_B (r_A - 1))}.$$

Proposition 3

Assume $K_A \neq K_B$. If $r_A = r_B$, $K_A r_A (r_B - 1) = K_B r_B (r_A - 1)$, or $\tilde{m} \notin (0, 1]$, then H has **no zeros** in (0, 1). Otherwise, H has **one zero** in (0, 1), $m = \tilde{m}$.

At most one shift point!!

 $beneficial {\rightarrow} detrimental \ or \ detrimental {\rightarrow} beneficial$

Extending the results in discrete time

Derivative of H at $m = 0^+$

Proposition 4

Assume $K_A \neq K_B$. Then,

$$H'(0^+) = \frac{(r_A - r_B)(K_A - K_B)}{(r_A - 1)(r_B - 1)} \quad \text{(either } \ge 0 \text{ or } \le 0\text{)}.$$

<u>Remark</u>: Franco & Ruiz-Herrera (2015) considered $\zeta_i = 1$, i.e., $K_i = r_i - 1$, and in that case

$$H'(0^+) = rac{(r_A - r_B)^2}{(r_A - 1)(r_B - 1)} \ge \mathbf{0}.$$

Extending the results in discrete time

Monotonicity of H

Consider

$$\begin{split} &a \coloneqq (r_B - 1)(K_A \sqrt{r_A}(r_B - 1) + K_B \sqrt{r_B}(r_A - 1)), \\ &b \coloneqq K_B(r_B - 1)(2K_A \sqrt{r_A} - (K_A - K_B + (K_A + K_B)r_A)\sqrt{r_B}), \\ &c \coloneqq -K_A K_B^2(\sqrt{r_A} - \sqrt{r_B})(\sqrt{r_A r_B} - 1). \end{split}$$

Lemma 2

Equation $ay^2 + by + c = 0$ has two simple real roots.

Define
$$\mathbf{y}^*$$
 as the largest root of $ay^2 + by + c = 0$ and
$$\mathbf{x}^* \coloneqq \frac{K_A(K_B(\sqrt{r_A} - \sqrt{r_B}) + \sqrt{r_A}(r_B - 1)\mathbf{y}^*)}{K_B\sqrt{r_B}(r_A - 1)}.$$

Extending the results in discrete time

H is either **monotonic** or **hump-shaped**...

Proposition 5

Assume $K_A \neq K_B$. Then, $f_A(x^*) \neq f_B(y^*)$, and if we define

$$m_{\max} \coloneqq \frac{y^* - f_B(y^*)}{f_A(x^*) - f_B(y^*)},$$

then the following holds:

- 1 If $m_{\max} \notin (0,1)$, then H is strictly monotonic in [0,1].
- 2 If $m_{\max} \in (0, 1)$, then H is strictly increasing in $[0, m_{\max})$ and strictly decreasing in $(m_{\max}, 1]$.

Extending the results in discrete time

Response scenarios

Discrete population models and dispersal: Part I

Theorem 1

Assume $K_A \neq K_B$.
• If $\frac{\sqrt{r_A}(r_B-1)}{\sqrt{r_B}(r_A-1)} \leq \frac{K_B}{K_A} < 1$, then H is positive in (0,1). Moreover,
(i) If $m_{\max} \notin (0,1)$, then H is strictly increasing in $[0,1]$
(monotonically beneficial).
(ii) If $m_{\max} \in (0, 1)$, then H is strictly increasing in $[0, m_{\max})$ and
strictly decreasing in $(m_{\max}, 1]$ (unimodally beneficial).
2 If $\frac{K_B}{K_A} < \frac{\sqrt{r_A}(r_B-1)}{\sqrt{r_B}(r_A-1)}$, then $0 < m_{\max} < \tilde{m} < 1$. Moreover, H is
positive and strictly increasing in $(0, m_{\max})$, positive and
strictly decreasing in $(m_{\max}, ilde{m})$, and negative and strictly
decreasing in $(\tilde{m}, 1]$ (beneficial turning detrimental).
• If $\frac{K_{\rm B}}{M_{\rm B}} > 1$ then H is negative and strictly decreasing in [0, 1]

3 If $\frac{\kappa_{\rm B}}{\kappa_{\rm A}} > 1$, then H is negative and strictly decreasing in [0,1] (monotonically detrimental).

Asymmetric dispersal

Asymmetric dispersal

Discrete population models and dispersal: Part I

Studying the effect of dispersal asymmetry Motivation

- Asymmetric dispersal naturally appears in many populations (e.g., wind carrying seeds in a particular direction).
- Assume that the response to symmetric dispersal is

Modifying this scenario implies modifying r_i or K_i since symmetric dispersal has a <u>fixed response</u> for r_i and K_i given. This is **unfeasible** in most cases.

Can induced asymmetry modify the scenario?

Models for asymmetric dispersal

Assume a symmetry level $s \in [0,1]$ (s = 1 symmetry, s = 0 total asymmetry).

Focus on model (4) and define

$$egin{aligned} s_1 &\coloneqq rac{\mathcal{K}_B(r_A-1)(\mathcal{K}_Ar_A(r_B-1)+\mathcal{K}_Br_B(r_A-1))}{\mathcal{K}_Ar_A(r_B-1)(\mathcal{K}_A(r_B-1)+\mathcal{K}_B(r_A-1))}, \ s_2 &\coloneqq rac{y^*}{f_A(x^*)}, \quad ext{ and } \quad s_3 \coloneqq rac{\mathcal{K}_B}{\mathcal{K}_A}. \end{aligned}$$

Discrete population models and dispersal: Part I

Asymmetry does not yield new response scenarios

Theorem 2

The following is true for **model** (4) **(restrict mobility from A to B)**:

- 1 If $r_A > r_B$, then $s_3 < s_2 < s_1$ and the following holds:
 - If s < s₃, then H is negative and strictly decreasing in (0,1] (monotonically detrimental).
 - 2 If s₃ < s ≤ s₂, then H is positive and strictly increasing in (0,1] (monotonically beneficial).
 - If s₂ < s ≤ s₁, then u* ∈ (0,1). Moreover, H is positive and strictly increasing in (0, u*], and positive and strictly decreasing in [u*, 1) (unimodally beneficial).
 - If s > s₁, then 0 < u* < m* < 1. Moreover, H is positive and strictly increasing in (0, u*], positive and strictly decreasing in [u*, m*), and negative and strictly decreasing in (m*, 1] (beneficial turning detrimental).

Asymmetry does not yield new response scenarios

Theorem 2

- 2 If $r_A < r_B$, then $s_1 < s_2 < s_3$ and the following holds:
 - If s < s₁, then 0 < u* < m* < 1. Moreover, H is positive and strictly increasing in (0, u*], positive and strictly decreasing in [u*, m*), and negative and strictly decreasing in (m*, 1] (beneficial turning detrimental).
 - ② If s₁ ≤ s < s₂, then u^{*} ∈ (0,1). Moreover, H is positive and strictly increasing in (0, u^{*}], and positive and strictly decreasing in [u^{*}, 1) (unimodally beneficial).
 - If s₂ ≤ s < s₃, then H is positive and strictly increasing in (0,1] (monotonically beneficial).
 - If s > s₃, then H is negative and strictly decreasing in (0,1] (monotonically detrimental).
- If r_A = r_B, then H is negative and strictly decreasing in (0,1]. (monotonically detrimental).

Changing the scenario: One way or another...

From Theorem 2, for model (4) we observe the following:

- $r_A = r_B$. The only possible scenario is monotonically detrimental for all values of $s \in [0, 1]$.
- $r_A \neq r_B$ Varying asymmetry when restricting mobility from A to B may yield different scenarios, but **NOT always:**

Changing the scenario: One way or another...

We can also restrict mobility from B to A!!

$$\begin{cases} x_{t+1} = (1 - m \cdot s) f_A(x_t) + m f_B(y_t), \\ y_{t+1} = (m \cdot s) f_A(x_t) + (1 - m) f_B(y_t), \end{cases}$$

$$\begin{cases} x_{t+1} = (1 - m) f_A(x_t) + (m \cdot s) f_B(y_t), \\ y_{t+1} = m f_A(x_t) + (1 - m \cdot s) f_B(y_t), \end{cases}$$
(5)

Proposition 6

Assume $r_A \neq r_B$. Then, the four response scenarios listed in Theorem (2) can be obtained by restricting mobility from A to B or from B to A. That is, for each of the four scenarios there exists a value $s \in (0, 1]$ such that either model (4) or model (5) shows the scenario.

Part II by Daniel Franco

Funding: Agencia Estatal de Investigación, Spain, and European Regional Development Fund, EU. Grants MTM2017-85054-C2-2-P and PID2021-122442NB-I00.

Thank you for your attention