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Motivation

(2019) Habitat fragmentation has become one of the main
drivers of species extinction and biodiversity loss.

Discrete population models and dispersal: Part | 3/29



Introduction Symmetric dispersal Asymmetric dispersal
@00 0000000000000 00 000000000

Motivation

(2019) Habitat fragmentation has become one of the main
drivers of species extinction and biodiversity loss.

Discrete population models and dispersal: Part | 3/29



Introduction Symmetric dispersal Asymmetric dispersal
oeo 0000000000000 00 000000000

Effects of dispersal on population fitness

How does increased connectivity affect...?
® Persistence
® Synchrony
e Stability
o
Recently, there is increasing interest in the effect on
® Total biomass

We study the simplest network of two patches that behave as
sources when isolated.

(T
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Experimental results

@ (lves et al., 2004) Increasing dispersal always increases total
biomass for yeast-like fungus.

@® (Astrom and Part,2013) Increasing dispersal always
decreases total biomass for oribatid mites.

©® (Dey et al., 2014) Dispersal has no significant effect on the
total biomass regardless of the dispersal intensity for fruit flies.

@ (Vortkamp et al., 2022) Low dispersal increases total biomass
but high dispersal decreases it for Escherichia coli.
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Symmetric dispersal
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Models for symmetric dispersal

Continuous time

Freedman and Waltman (1977):

N <y {%ZfA(X)—E(X—Y),
i ¥ = faly) — e(y — x),
S, S,

fa fs

Maps f4 and fg are the logistic maps

0 =rx (1- 55 ).

and the dispersal rate is € € [0, 00).
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Gao D, Lou Y (2022) Total biomass of a single population in
two-patch environments. Theor Popul Biol 146:1-14.

Symmetric dispersal
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(a)

Ka+Kp

(b)

K +Kp

=

(c)

Kx+Kp

(d)

Ka+Kp

=)
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Models for symmetric dispersal

Discrete time
Reproduction/Dispersal (Gadgil, 1971):
xt+1 = (L — m)fa(xt) + mfe(yt),
Ye+1 = mia(xe) + (1 — m)fe(ye),
Dispersal /Reproduction
xe+1 = fa((1 — m)xe + myy),
Yev1 = fe(mxe + (1 — m)yt),
Maps f4 and fg are the Beverton-holt maps

rix
fi(x) = —>—,
) =17 e

Asymmetric dispersal
000000000

where r; > 1 (sources), ¢; = (r; — 1)/K; is the strength of
intraspecific competition, and m € [0, 1] is the dispersal rate.
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To our knowledge, only 2 previous works have addressed the
considered questions in discrete time.
@ Gadgil (1971) studied model (2) with quadratic local
dynamics and proved increasing dispersal always decreases
total biomass.
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To our knowledge, only 2 previous works have addressed the
considered questions in discrete time.
@ Gadgil (1971) studied model (2) with quadratic local
dynamics and proved increasing dispersal always decreases

total biomass.
® Franco and Ruiz-Herrera (2015) studied model (2) with
Beverton-Holt and Ricker local dynamics. They showed...
® Theoretically: for m — 07, increasing dispersal always
increases total biomass.
® Numerically: unique response scenario (hump-shaped).

A BEVERTON-HOLT B RICKER

Total population size
Total population size

0.40 L ' L 0.30 L L '
0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

Dispersal rate, m Dispersal rate, m
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Why these contradictory results?

Gao & Lou (2022) results vere obtained for heterogeneous
patches.

This was NOT true for the previous works:

® Gadgil (1971) assumed a common growth rate in the two
patches, ra = rg.

® Franco & Ruiz-Herrera (2015) implicitly assumed a common
strength of intraspecific competition in the two patches
since they used B-H maps in the form

riX

i) =

which implies {4 = (g = 1.
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Extending the results in discrete time

The order of events doesn’t matter

Reproduction/Dispersal:

xt+1 = (L — m)fa(xt) + mfe(yt), )
Ye+1 = mfa(xe) + (1 — m)fg(yr),
Dispersal /Reproduction
xe+1 = fa((1 — m)xy + myy), 3)
Yer1 = fg(mxe + (1L — m)yy),

Proposition 1

For B-H local dynamics, systems (2) and (3) are topologically
equivalent.
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Extending the results in discrete time

Stability

Assume Ka = K. Then, connecting the two patches with any
dispersal rate m € (0, 1] has no effect on the asymptotic total
biomass.

In what follows, we assume K # Kg.

Proposition 2 (Application of Kirkland, S., Li, C.K., & Schreiber, S.J.

SIAM J. Appl. Math. 2006)

Assume Ka # Kg. For each m € [0, 1], system (2) has a fixed
point (x(m),y(m)) € R2. such that

im_(xe 4) = (x(m), y(m)

for any initial condition (xo, yo) € R3 \ {(0,0)}.
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Extending the results in discrete time

(Asymptotic) total biomass

By Lemma 3, for each dispersal rate m € [0, 1], we can define the
(asymptotic) total biomass as x(m) + y(m).

To study the effect of dispersal on the total biomass, we consider
H: [0,1] — R with
H(m) := x(m) + y(m) — (Ka + Kg).
H(m) > 0 — connecting patches is beneficial,
H(m) < 0 — connecting patches is detrimental.

The possible response scenarios depend on two aspects:
@ Shift points (H(m) =0 for m € (0,1)).
® Monotonicity of H.

Discrete population models and dispersal: Part | 14/29
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Extending the results in discrete time

Shift points (zeros of H in (0, 1))

Define
5 KAKB(rA — 1)(rB — 1)(rA — I‘B)
T (KA(rB — 1) + KB(rA - 1))(KAI’A(I‘B - 1) - KBrB(rA — 1))

Proposition 3

Assume KA ;é KB- IfI’A =Irg, KAI’A(I’B — 1) = KBrB(rA — 1), or
m ¢ (0,1], then H has no zeros in (0,1). Otherwise, H has one
zero in (0,1), m = m.

At most one shift point!!

beneficial—detrimental or detrimental—beneficial

Discrete population models and dispersal: Part | 15/29



Introduction Symmetric dispersal Asymmetric dispersal
000 0000000000 e0000 000000000

Extending the results in discrete time

Derivative of H at m = 0"
Assume Ka # Kg. Then,

Hoty= A=re)Ka=Ke) e > 00 <0).

(ra—1)(rg — 1)

Remark: Franco & Ruiz-Herrera (2015) considered (; = 1, i.e.,
K; = r; — 1, and in that case

H'(0F) = (a—r8)”
(ra=1)(rs =1)=
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Extending the results in discrete time

Monotonicity of H

Consider
a = (rg — 1)(Kav/7a(rs — 1) + Ke\/ra(ra — 1)),
b= Kg(rg — 1)(2Kay/Ta — (Ka — Kg + (Ka + Kg)ra)\/78),
¢ = —KaK5(v/ra — \/78)(\/7are — 1).

Equation ay® + by + ¢ = 0 has two simple real roots.

Define y* as the largest root of ay? + by + ¢ =0 and

o Ka(Ke(V7a — \/T8) + /Ta(rs —1)y")
o KB\/E(”A — 1)

Discrete population models and dispersal: Part | 17/29
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Extending the results in discrete time

H is either monotonic or hump-shaped...
Assume Ka # Kg. Then, fa(x*) # fg(y*), and if we define

o Y =By
P fa(x*) = fa(y*)’

then the following holds:
@ If myax ¢ (0,1), then H is strictly monotonic in [0, 1].

@ If myax € (0,1), then H is strictly increasing in [0, myayx) and
strictly decreasing in (Mmax, 1].

Discrete population models and dispersal: Part | 18/29
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Extending the results in discrete time

Response scenarios
(a) (b)

a(m)+y(m)

K+K, K, +K,

K,+K,

K+K,
= 7w
= =
pgs £
g g
w T s

04

B

m,

‘max
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Extending the results in discrete time

Assume K # Kp.
o/ ‘/z((;i 3 < KB < 1, then H is positive in (0,1). Moreover,
(i) If mmax ¢ (O, 1), then H is strictly increasing in [0, 1]
(monotonically beneficial).
(ii) If mmax € (0,1), then H is strictly increasing in [0, Myax) and
strictly decreasing in (Mpax, 1] (unimodally beneficial).
e If KB < %ﬁ:ﬁjg, then 0 < Mpax < m < 1. Moreover, H is
p051t/ve and strictly increasing in (0, myayx), positive and
strictly decreasing in (myax, M), and negative and strictly

decreasing in (m, 1] (beneficial turning detrimental).

e If % > 1, then H is negative and strictly decreasing in [0, 1]
(monotonically detrimental).
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Asymmetric dispersal
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Studying the effect of dispersal asymmetry
Motivation

Asymmetric dispersal
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® Asymmetric dispersal naturally appears in many populations
(e.g., wind carrying seeds in a particular direction).
® Assume that the response to symmetric dispersal is

K+K,

Modifying this scenario implies modifying r; or K; since
symmetric dispersal has a fixed response for r; and K; given.
This is unfeasible in most cases.

Can induced asymmetry modify the scenario?

Discrete population models and dispersal: Part |
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Models for asymmetric dispersal

Assume a symmetry level s € [0,1] (s = 1 symmetry, s = 0 total
asymmetry).
A B A B

m-s m
(1= m-s)fa(xe) + Bl (mos)fax) + (1= m)fa(x) + -% mfa(xe) +
+ mfg(ye) E m + (1= m)fa(ye) + (m- s)fa(ye) _m-s +(1—m-s)fg(ye)
al

{xﬂ_l =(1—m-s)fa(x) + mfg(yt),
yerr = (M- s)fa(xe) + (1 — m)fa(ye),

(4) (%)

xer1 = (1 — m)fa(xe) + (m - s)fp(yr),
Yer1 = mfa(xt) + (1 — m-s)fg(yt),

Focus on model (4) and define

_ KB(rA — 1)(KAI’A(I’B - 1) + KBrB(rA — 1))
KArA(rB — 1)(KA(rB - 1) + KB(rA — 1)) ’
Y _ Ks
Sy = 07) and S3 = Ky

Discrete population models and dispersal: Part | 23/29
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Asymmetry does not yield new response scenarios

The following is true for model (4) (restrict mobility from A to
B):
@ /fra > rg, then s3 < s, < 51 and the following holds:
@ Ifs < s3, then H is negative and strictly decreasing in (0, 1]
(monotonically detrimental).
@® Ifs3 < s < sy, then H is positive and strictly increasing in
(0,1] (monotonically beneficial).
© Ifs, < s < sy, then u* € (0,1). Moreover, H is positive and
strictly increasing in (0, u*], and positive and strictly
decreasing in [u*,1) (unimodally beneficial).
O Ifs> s, then 0 < u* < m* < 1. Moreover, H is positive and
strictly increasing in (0, u*], positive and strictly decreasing in
[u*, m*), and negative and strictly decreasing in (m*, 1]
(beneficial turning detrimental).

Discrete population models and dispersal: Part |
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Asymmetry does not yield new response scenarios

@® Ifra < rg, then s; < sy < s3 and the following holds:

@ /fs < sy, then 0 < u* < m* < 1. Moreover, H is positive and
strictly increasing in (0, u*], positive and strictly decreasing in
[u*, m*), and negative and strictly decreasing in (m™*,1]
(beneficial turning detrimental).

@ Ifsy <s< sy, then u* € (0,1). Moreover, H is positive and
strictly increasing in (0, u*], and positive and strictly
decreasing in [u*,1) (unimodally beneficial).

© /f s, < s < ss3, then H is positive and strictly increasing in
(0,1] (monotonically beneficial).

O Ifs > s3, then H is negative and strictly decreasing in (0, 1]
(monotonically detrimental).

© Ifra = rg, then H is negative and strictly decreasing in (0, 1].
(monotonically detrimental).
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Changing the scenario: One way or another...

From Theorem 2, for model (4) we observe the following:

. . The only possible scenario is monotonically
detrimental for all values of s € [0, 1].

° Varying asymmetry when restricting mobility from A
to B may yield different scenarios, but NOT always:

ra = 3, g = 1.2
10.0

Total biomass
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Changing the scenario: One way or another...

We can also restrict mobility from B to All

Xe+1 = (1 — m-s)fa(xt) + mfg(yt), (4)
Ye+1 = (m - s)falxe) + (1 — m)fe(ye),

xt+1 = (L — m)fa(xe) + (m - s)fe(yr), (5)
Ye+1 = mfa(xe) + (1 — m- s)fg(yr),

Proposition 6

Assume rp # rg. Then, the four response scenarios listed in
Theorem (2) can be obtained by restricting mobility from A
to B or from B to A. That is, for each of the four scenarios there
exists a value s € (0, 1] such that either model (4) or model (5)
shows the scenario.
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