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Introduction

Problem: Bertrand duopoly model exhibits chaos under bounded
rationality.(1)

Key Findings:
Flip bifurcations and mixed-mode oscillations (MMOs).
Instability driven by adjustment speed (k).

Solution: State feedback control stabilizes Nash equilibrium.

(1) Named from the article: Bertrand, J. (1883) ”Book review of *théorie mathématique de la richesse sociale* and of
*recherches sur les principes mathématiques de la théorie des richesses*”, Journal de Savants 67: 499–508.
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What is a Duopoly?

A duopoly is a market with only two major firms competing.

Example: Coca-Cola vs. Pepsi – both sell similar products, and adjust
prices based on each other.

Their decisions influence the entire market—competition can be
stable or chaotic.

Figure: Real-world example of a duopoly
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Duopoly Model Description

Market Setup: Two firms produce differentiated products (q1, q2) in
discrete time (t = 0, 1, 2, . . . ) and their Prices (p1, p2).
Key Equations:

1 Consumer Utility: U(q1, q2) = α(q1 + q2)− 1
2(q

2
1 + 2dq1q2 + q22)

α: Market size
d ∈ (−1, 1): Differentiation (d → 0: independent; d < 0:
complements)

2 Inverse Demand: pi = α− qi − dqj

3 Direct Demand: qi =
a(1−d)−bpi+dpj

b , i = 1, 2 where b = 1− d2

4 Quadratic Costs:
C1(q1) = (c1q1 + c2)q1 + c3 and C2(q2) = (c4q2 + c5)q2 + c6

5 Profit Functions: πi = piqi − Ci (qi ) i = 1, 2.
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Duopoly Model Description

Bounded Rationality Adjustment:

pi (t + 1) = pi (t) + kipi (t) · ϕi , i = 1, 2.

The firms’ marginal profits are expressed as:

ϕ1 =
∂π1
∂p1

and ϕ2 =
∂π2
∂p2

(1)

ki > 0: Speed of adjustment

Dynamical System:{
p1(t + 1) = p1(t) + k1p1(t) · ϕ1(p1, p2)

p2(t + 1) = p2(t) + k2p2(t) · ϕ2(p1, p2)
(2)

Both firms have similar adjustment speeds k1 = k2 = k . The system
dynamics are discussed in subsequent sections.
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Equilibrium and Stability

The equilibrium points are found by solving the condition pi (t + 1) = pi (t)
in system (2). The following fixed points are obtained:

E0 = (0, 0),

E1 =

(
0,

a(1− d)(b + 2c4) + c5b

b2

)
,

E2 =

(
a(1− d)(b + 2c1) + c2b

b2
, 0

)
,

E3 = (p∗1 , p
∗
2) (Bertrand–Nash equilibrium),

Thm 1: The equilibrium point E0 is always unstable (a repelling
node).
Thm 2: The equilibrium points E1 and E2 are unstable:
Saddle type if k < (b+ci )

pjb
, and Repelling node if k > b2

(b+ci )pj
.

Economic interpretation:The Bertrand–Nash equilibrium E3 is the only
economically relevant and potentially stable state, representing a sustained
duopoly where both firms remain active.
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Equilibrium and Stability

The Bertrand–Nash equilibrium point is given by E3 = (p∗1 , p
∗
2), where:

p∗1 =
2(b + c4) [a(1− d)(b + 2c1) + c2b] + d(b + 2c1) [a(1− d)(b + 2c4) + c5b]

4(b + c1)(b + c4)− d2(b + 2c1)(b + 2c4)
, (3)

and

p∗2 =
2(b + c1) [a(1− d)(b + 2c4) + c5b] + d(b + 2c4) [a(1− d)(b + 2c1) + c2b]

4(b + c1)(b + c4)− d2(b + 2c1)(b + 2c4)
. (4)

Figure: Graphical representation of the Bertrand–Nash equilibrium
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Bifurcation and Chaos

The following Jacobian matrix is used to assess the stability of the
system’s Nash equilibrium point E3.

J(p∗1 , p
∗
2) =

(
j11 j12
j21 j22

)
=

1 + k · p∗2 ·
∂2Π1
∂p1∂p2

k · p∗2 ·
∂2Π1

∂p22

k · p∗1 ·
∂2Π2

∂p21
1 + k · p∗1 ·

∂2Π2
∂p1∂p2


To analyze the stability of the Nash equilibrium point, three
simultaneous conditions must be satisfied for it to be locally
asymptotically stable.

(i) 1− det J > 0

(ii) 1− Tr J + det J > 0

(iii) 1 + Tr J + det J > 0

The initial condition (i) transforms into this:

k ·
[
4(b + c1)(b + c4)− d2 · (b + 2c1)(b + c4)

]
− 2b2 ·

(
b + c1
p∗2

+
b + c4
p∗1

)
< 0
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Bifurcation and Chaos

The second condition (ii) transforms into this:

k2p∗1p
∗
2

b4
·
[
4(b + c1)(b + c4)− d2 · (b + 2c1)(b + c4)

]
> 0

Finally, the third condition (iii) transforms into this:

F (k) = k2 ·
[
4(b + c1)(b + c4)− d2 · (b + 2c1)(b + c4)

]
−4kb2 ·

(
b + c1

p∗2
+

b + c4

p∗1

)
+

4b4

p∗1 p
∗
2

> 0.

Theorem

The Bertrand–Nash equilibrium point E3 is asymptotically stable if k < k f1 ,
where k f1 is the solution of F (k) = 0.
Furthermore, the system (2) undergoes a flip bifurcation at k = k f1 .
Period-2 points bifurcate from E3, and chaotic dynamics may emerge
through a period-doubling cascade for k > k f1 .
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Bifurcation and Chaos

Numerical Simulations:
We fix parameters as α = 3.1, c1 = 0.5, c2 = 0.6, c3 = 1.1, c4 = 0.8,
c5 = 0.6, c6 = 0.2, and d = 0.2 to explore the system’s dynamics with
respect to the adjustment speed k. Figure 3a displays the bifurcation
diagrams for prices p1 and p2 as k varies. For k < 0.218, the system
remains stable at the Bertrand–Nash equilibrium. Beyond this critical
value, period-doubling bifurcations arise, visible as branching in the
diagrams, leading to chaotic attractors that clearly illustrate the transition
from stable duopoly pricing to complex chaotic behavior as the firms
adjust their strategies more aggressively.
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Bifurcation and Chaos

For k > 0.28 (beyond the stability region), the system exhibits chaotic
dynamics characterized by strange attractors (Fig. 3b).

(a) (b)

Figure: Chaotic dynamics: (a) Transition to chaos via bifurcations; (b) Resulting
strange attractor geometry.
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Mixed Mode Oscillations

Mixed-mode oscillations (MMOs) exhibit alternating large and small
amplitude peaks, transitioning to chaos via bifurcations near the Nash
equilibrium. Their irregular patterns (e.g., 12121213) demonstrate
complex, non-periodic dynamics, visualized in Fig. 4.

Figure: Time series of oscillator, patterns of Mixed-Mode Oscillations
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Chaos Control of the Model

Controlled System: To mitigate chaotic behavior that emerges when
k > 0.28, we introduce a control force u(t) into system (2) using state
feedback control [1]. Specifically, Firm 1 updates its price p1(t + 1) based
on its own previous price p1(t), the competitor’s previous price p2(t), and
the coordinates of the Bertrand–Nash equilibrium. This dynamic
adjustment enables stabilization by correcting deviations through small,
continuous interventions.
The proposed method is both practical and cost-effective. Firms can
implement it using real-time analytics for minor price corrections, or it may
be enforced through regulatory policies. This minimally invasive strategy
effectively controls chaos and promotes stable, predictable market
behavior.
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Chaos Control of the Model

The controlled system is defined as follows:
p1(t + 1) = p1(t) + k · ∂Π1

∂p1
+ u(t),

p2(t + 1) = p2(t) + k · ∂Π2

∂p2
,

(5)

where u(t) = −v1(p1(t)− p∗1)− v2(p2(t)− p∗2),
with v1 and v2 being feedback gains designed to stabilize the system near
the Bertrand–Nash equilibrium.
The Jacobian matrix of the controlled system (5), evaluated at the
equilibrium point (p∗1 , p

∗
2), is given by:

Jc(p
∗
1 , p

∗
2) =

[
j11 − v1 j12

j21 j22 − v2

]
.

The trace and determinant of the Jacobian matrix Jc are computed as:

Tc = j11 + j22 − v1, Dc = j22(j11 − v1)− j21(j12 − v2).
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Chaos Control of the Model

Let us define:
α1 =

J22
J21

, β1 =
−J11J22+J12J21+1

J21
,

α2 =
−1+J22

J21
, β2 =

J11+J22−1−J11J22+J12J21
J21

,

α3 =
1+J22
J21

, β3 =
−J11−J22−1+J11J22−J12J21

J21
.

Theorem (2)

The system (5) can be stabilized toward its unstable Bertrand–Nash
equilibrium point E3 = (p∗1 , p

∗
2) using the control law (19) if:

max{α2v1 + β2, α3v1 + β3} < v2 < α1v1 + β1. (6)

M. Azioune, R. Lozi, M.S. Abdelouahab (1,3Laboratory of Mathematics and their interactions, Abdelhafid Boussouf University Center, Mila, Algeria 2Laboratory J.A. Dieudonné, CNRS, Université Côte d’Azur, France)Chaos Control in Bertrand Game
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Chaos Control of the Model

The condition (6), as stated in Theorem 2, defines three linear inequalities
that form a triangular region in the (v1, v2) plane, as shown in Fig. 5(a)
for k = 0.31. This region corresponds to the set of control parameters for
which the Jacobian matrix of the controlled system has eigenvalues strictly
inside the unit disc, ensuring local asymptotic stability.
Mathematically, this implies that small perturbations decay over time.
Economically, the interior of the triangle represents stable price adjustment
strategies around the Bertrand–Nash equilibrium, while points outside or
on the boundary may lead to instability and erratic pricing behavior.
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Chaos Control of the Model

We simulated the feedback control method’s efficacy in stabilizing chaos
around an unstable state. The fixed parameters were:(v1, v2) = (−2, 2),

α = 3.1, c1 = 0.5, c2 = 0.6, c3 = 1.1, c4 = 0.8, c5 = 0.6, d = 0.2 k = 0.31.

(a) (b)

Figure: (a) Stability region; (b) Time series of the controlled system.
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Conclusion

This paper analyzes a Bertrand duopoly model where boundedly rational
firms adjust prices strategically, leading to complex dynamics such as flip
bifurcations, chaos, and mixed-mode oscillations. We demonstrate that
market stability depends critically on adjustment speeds and product
differentiation. To counteract chaotic behavior, we propose a state
feedback control method, which numerical simulations confirm effectively
restores equilibrium. Our results provide both theoretical insights into
oligopoly dynamics and a practical tool for stabilizing unstable markets.
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Thank you for your attention.
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