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Consider a piecewise monotonic map T : [0, 1] → [0, 1], this means
that there exists a finite family Z of pairwise disjoint open intervals
with

⋃
Z∈Z Z = [0, 1] such that T

∣∣
Z

is continuous and strictly
monotonic for all Z ∈ Z. Moreover, assume that for every Z ∈ Z
the map T

∣∣
Z

is differentiable and its derivative can be extended to
a continuous function on the closure of Z . We call T expanding, if
inf |T ′| > 1. Although T need not continuous one can use a
standard doubling points construction we can make T to a
continuous map on a compact metric space.
For a finite union of open intervals U set

A(U) := [0, 1] \
∞⋃
j=0

T−jU .

It is the set of all points whose orbit never enters U. Throughout
this talk we will always assume that A ̸= ∅.



Next we briefly describe the standard doubling points construction.
Let E be the set of endpoints of intervals of monotonicity (except 0
and 1), and define C (T ) :=

⋃∞
n=0 T

−nE \ {0, 1}. Replace each
c ∈ C (T ) by two points c− and c+ with c− < c+. We can extend
T to a continuous map T̂ : X̂ → X̂ on this new compact metric
space X̂ .



Our goal is to investigate the “size” of A(U). Different notions of
fractal dimensions are known for this purpose, in particular the
Hausdorff dimension. However only a number is assigned to a set,
we do not have any information if the set is “symmetric” or
“asymmetric”. For this purpose one can use “multifractal
dimensions”. Before we define “multifractal Hausdorff dimensions”
we will give two examples in order to motivate our goal. Note that
in both examples the sets Aj consists exactly of those points not
satisfying limn→∞ T n

j x = 1
2 . Calculating the Hausdorff dimension

we obtain
dimH(A1) =

log 2
log 3 = 0.630929753571457437099527114343 and

dimH(A2) = 0.1154857721125173134499955642356865179888. It
shows the obvious fact that A2 is “smaller” than A1, but it does not
give us any information that A2 is “less symmetric” than A1.



Define

T1x :=


3x , if x ∈

[
0, 1

3

]
,

x
2 + 1

4 , if x ∈
(1

3 ,
2
3

)
,

3x − 2 , if x ∈
[2

3 , 1
]
,

U1 :=
(1

3 ,
2
3

)
and A1 := A(U1), which is the usual Cantor set.
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Let

T2x :=


3x , if x ∈

[
0, 1

3

]
,

x
2 + 1

4 , if x ∈
(1

3 , 1 − 10−8),
108x − 108 + 1 , if x ∈

[
1 − 10−8, 1

]
,

U2 :=
(1

3 , 1 − 10−8) and A2 := A(U2),a “much more asymmetric”
Cantor set.
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As usual denote by |I | the length of an interval I . If n ∈ N, let Zn

be the collection of all nonempty sets of the form
⋂n−1

j=0 T−jZj with
Z0,Z1, . . . ,Zn−1 ∈ Z. We define m(Z ) for Z ∈ Zn by
m(Z ) :=

(1
2

)n (observe that soon we will consider a more general
situation). For s ∈ R we define the “multifractal Hausdorff
dimension ds(A)” by

ds(A) := sup

t : lim
n→∞

∑
Z∈Zn
Z∩A̸=∅

m(Z )s |Z |t = ∞

 .

Since |Z | =
(1

3

)n for Z ∈ Zn in our first example we get
ds(A1) = (1 − s) log 2

log 3 . Our next figures show the graphs of
s 7→ ds(Aj) for s ∈ [0, 1]. Here we see that these graphs have a
different form (however, note that we use a different scaling on the
y -axis).
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Given a point x ∈ A we define the local dimension dimloc(x) as

dimloc(x) := lim
r→0+

logm((x − r , x + r))

log(2r)
,

where m(B) := limn→∞
∑

Z∈Zn
Z∩A∩B ̸=∅

m(Z ) if B ⊆ [0, 1] (note that 2r

is the length of the interval (x − r , x + r)). If α ∈ [0, 1] define
L(α) := {x ∈ A : dimloc(x) = α}. Then the map

σ : α 7→ dimH(L(α))

is called the multifractal spectrum of A.
Because of a result by D. Rand σ is the Legendre-transform of
s 7→ ds(A), this means σ(α) = inf {ds(A) + αs : s ∈ R}.



We will need the following definitions in order to give a more
general definition of multifractal Hausdorff dimensions. Denote by
C the family of all functions f such that for every Z ∈ Z the
restriction f

∣∣
Z

can be extended to continuous function fZ : Z → R.
Observe that a function f ∈ C may have discontinuities at the
endpoints of the intervals of monotonicity. Moreover let C∞ be the
family of all functions f such that for every Z ∈ Z the restriction
f
∣∣
Z
: Z → R is continuous and can be extended to continuous

function fZ : Z → R ∪ {+∞}. From now on we will always assume
that φ := − log |T ′| ∈ C∞. Suppose that ψ ∈ C . We call a Borel
probability measure m on [0, 1] an e−ψ-conformal measure, if
m(TI ) =

∫
I e

−ψ dm holds for every interval I contained in an
element of Z.
Results on multifractal dimensions or multifractal spectrum are
usually obtained only for Markov maps. Unfortunately our map T
need not be a Markov map.



Consider a nonempty closed set B ⊆ A. Then B is called a Markov
subset of A, if there exists a finite partition Y refining Z (this
means ∀Y ∈ Y ∃Z ∈ Z with Y ⊆ Z ) such that T (B ∩ Y ) ⊆ B for
all Y ∈ Y and for any Y1,Y2 ∈ Y one has either
B ∩Y2 ⊆ T (B ∩Y1) or Y2 ∩T (B ∩Y1) = ∅. Denote the collection
of all Markov subsets of A by M(A). If htop(A,T ) > 0 then M(A)
is not empty. From now on we always assume that htop(A,T ) > 0.
By p(A,T , f ) we denote the topological pressure. Given f ∈ C∞
we define

q(A,T , f ) := sup
B∈M(A)

sup
g∈C
g≤f

p(B,T , g) .

According to a result of F. Hofbauer we get that
q(A,T , f ) = p(A,T , f ) if f ∈ C and p(A,T , f ) > supx∈A f (x).



Suppose that ψ ∈ C satisfies q([0, 1],T , ψ) = 0. Then a result by
F. Hofbauer and M. Urbański implies the existence of an
e−ψ-conformal measure m. From now on we always assume that
ψ ∈ C , q(A,T , ψ) = 0, m is an e−ψ-conformal measure and
A ⊆ suppm.
Let E ,F ⊆ [0, 1], s ∈ R and ε > 0. We denote by Uε(F ) the
collection of all at most countable covers of F by intervals of length
at most ε centered at an element of F , and by Vε(F ) the collection
of all at most countable packings (pairwise disjoint) of F by
intervals of length at most ε centered at an element of F .
Moreover, we call F a cover of E if it is a family of at most
countably many subsets with E ⊆

⋃
F∈F F . Denote the collection

of all covers of E by F(E ). Now we are able to define the
multifractal Hausdorff dimension and the multifractal packing
dimension.



To this end we first define

νs,t(E ) := sup
F⊆E

lim
ε→0+

inf
C∈Uε(F )

∑
C∈C

m(C )s |C |t and

πs,t(E ) := inf
F∈F(E)

∑
F∈F

(
lim
ε→0+

sup
C∈Vε(F )

∑
C∈C

m(C )s |C |t
)
,

where the value ∞ is allowed. Both, νs,t and πs,t are Borel
measures. We define the multifractal Hausdorff dimension ds(E )
and the multifractal packing dimension Ds(E ) by

ds(E ) := sup{t ∈ R : νs,t(E ) = ∞} and
Ds(E ) := sup{t ∈ R : πs,t(E ) = ∞} .

Obviously we have always ds(E ) ≤ Ds(E ).



Define sA := inf{s ∈ R : q(A,T , sψ) = 0}. For s ∈ R set
zs(A) := sup{t ∈ R : q(A,T , tφ+ sψ) > 0}. Let cs(A) be the
infimum of all t ∈ R such that there exists an e−tφ−sψ-conformal
measure with support A.
Now we present some results which have been obtained together
with F. Hofbauer and T. Steinberger.

Theorem 1
For s ∈ [0, sA) we have zs(A) = cs(A) .



In the case of expanding maps Theorem 1 implies also results on
multifractal Hausdorff dimensions of A. Observe that the condition
used in Theorem 2 below is a slight generalization of “expanding”
(only expanding on A). This condition obviously implies that
φ ∈ C . Moreover, it also implies that the function
t 7→ p(A,T , tφ+ sψ) has a unique zero for any s ∈ R.

Theorem 2
Suppose that supx∈A φ(x) < 0 and supx∈A ψ(x) < 0. Then for
s ∈ [0, sA) the unique zero of the function t 7→ p(A,T , tφ+ sψ)
equals zs(A), and we have

ds(A) = zs(A) = cs(A) .



Thank you very much

¡Muchas gracias!
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