Codimension-one and -two bifurcations and stability of certain second order rational difference equation with arbitrary parameters

> Naida Mujić¹ Zenan Šabanac²

¹Faculty of Electrical Engineering, ²Department of Mathematics and Computer Science, Faculty of Science, University of Sarajevo, Bosnia and Herzegovina

Cartagena, May, 28-30, 2025

Introduction

Equilibrium points and local stability

Behaviour of solutions in the neighborhood of a unique nonhyperbolic equilibrium point

Behaviour of solutions when there exist two positive equilibrium points

Introduction

▶ We consider the second-order rational difference equation

$$x_{n+1} = C + A \frac{x_n^k}{x_{n-1}^p},$$
 (1)

where k, p, A, C > 0 and $x_{-1}, x_0 > 0$.

The change of variable

$$x_n \mapsto C x_n$$
 (2)

transforms equation (1) into the following topological conjugate equation

$$x_{n+1} = 1 + a \frac{x_n^k}{x_{n-1}^p},\tag{3}$$

where $a = AC^{k-p-1} > 0$.

Motivation

Stević proved the global stability of the positive equilibrium in the case k = p ∈ (0, 1] and investigated the boundedness of positive solutions of the equation

$$x_{n+1} = \alpha + \frac{x_n^k}{x_{n-1}^p},$$
 (4)

- Khyat et al. computed the direction of the Neimark-Sacker bifurcation and gave the asymptotic approximation of the invariant curve of the equation (4) in the case when k = p = 2.
- Bešo et al. established boundedness, global attractivity, and Neimark-Sacker bifurcation results for the equation (3) for k = 1, p = 2 and gave the asymptotic approximation of the invariant curve near the unique equilibrium point.
- ▶ Berkal and Navarro performed a local stability analysis of the positive equilibrium of the equation (3) in the case when k = p − 1 with k ≥ 1, and studied the existence of the Neimark-Sacker bifurcation.
- We demonstrate a complete characterization of the number and uniqueness of positive equilibrium points of equation (3) and it's dynamics in the bi-parameter space revealing various well-organized structures with both regular and chaotic oscillations.

Equilibrium points and local stability

Behaviour of solutions in the neighborhood of a unique nonhyperbolic equilibrium point

Behaviour of solutions when there exist two positive equilibrium points

Equilibrium points

Proposition

Let a, k, p be positive real numbers and $\tilde{a} = \frac{(k-p-1)^{k-p-1}}{(k-p)^{k-p}}$.

- (1) The equation (3) has a unique positive equilibrium if one of the following conditions holds:
 - (a) k ,(b) <math>k = p + 1 and 0 < a < 1, (c) k > p + 1 and $a = \tilde{a}$.
- (2) The equation (3) has two positive equilibrium points if:

k > p + 1 and $a < \tilde{a}$.

- (3) The equation (3) has no positive equilibrium if:
 - (a) k > p + 1 and $a > \tilde{a}$. (b) k = p + 1 and $a \ge 1$.

Figure: Parametric regions in (p, k)-plane

Contributions

- Stević proved:
 - The equation has positive solutions that are unbounded if k² ≥ 4p > 4 or k ≥ 1 + p with p ≤ 1.
 - All positive solutions to the equation are bounded if $k^2 < 4p$ or
 - $2\sqrt{p} \leq k < 1 + p \text{ with } p \in (0, 1).$
 - ▶ Positive equilibrium $\bar{x} = \alpha + 1$ is globally asymptotically stable for $k = p \in (0, 1]$.
- Khyat et al. considered the parametric point (p, k) = (2, 2).
- Bešo et al. considered the parametric point (p, k) = (2, 1).
- ▶ Berkal and Navarro considered the parametric values on the line k = p − 1 with k ≥ 1.

Local stability analysis of the unique equilibrium point

Figure: Regions of local stability scenarios in parametric spaces (p, k) and (p, \bar{x})

(b) $k > p + 1 \land a = \tilde{a}$,

 $\tilde{a} = \frac{(k-p-1)^{k-p-1}}{(k-p)^{k-p}}$

Introduction

Equilibrium points and local stability

Behaviour of solutions in the neighborhood of a unique nonhyperbolic equilibrium point

Behaviour of solutions when there exist two positive equilibrium points

The unique nonhyperbolic equilibrium point in the parametric region R_{13}

- If (p, k) belongs to the region R₁₃, then there is a unique equilibrium point x̄ of (3) regardless of the value of a > 0.
- For parametric value $a = a_0 = \frac{(p-1)^{k-p-1}}{p^{k-p}}$ the equilibrium point $\bar{x} = \frac{p}{p-1}$ is nonhyperbolic.

Figure: Numerical simulations for parametric values $(p, k) = (2.1901, 2.6901) \in R_{13}$

Existence of Neimark-Sacker bifurcation in the region R_{13}

- If (p, k) ∈ R₁₃ the supercritical Neimark-Sacker bifurcation appears when a passes through the bifurcation value a₀.
- There exists a neighborhood U of the equilibrium point (x̄, x̄) such that the ω-limit set of solutions with initial conditions x₀, x₋₁ ∈ U is (x̄, x̄) if a < a₀, and belongs to a closed invariant C¹ curve Γ(a) encircling the equilibrium point (x̄, x̄) if a > a₀.

Figure: Trajectories and invariant curve (red) for parametric values $(p, k) = (4, 1) \in R_{13}$ and $a_0 = 0.790123$

Bifurcation diagram and Maximum Lyapunov exponents for parametric values in the region R_{13}

 $(p,k) = (4,1) \in R_{13}, a_0 = 0.790123$

The unique nonhyperbolic equilibrium point in the parametric region R_{12}

- If (p, k) lies on the line R₁₂ and 0 < a < 1, then equation (3) has a unique equilibrium point x̄.</p>
- For parametric value a = a₀ = 1/p and p > 1 the unique equilibrium point x̄ = p/p-1 is nonhyperbolic.

Figure: Numerical simulations for parametric values $(p, k) = (4, 5) \in R_{12}$

The unique nonhyperbolic equilibrium point in the parametric region R_{12}

 Using Wolfram Mathematica, we obtain that the first and the second Lyapunov coefficients are zero,

$$\ell_1(0) = 0, \quad \ell_2(0) = 0.$$

Unique equilibrium point is a Hopf point of codimension 3.

Figure: $(p, k) = (5, 6), a = 0.199999 < a_0, n = 1100000$

Figure: $(p, k) = (5, 6), a = 0.200001 > a_0$

Bifurcation diagram and Maximum Lyapunov exponents

Figure: (p, k) = (5, 6), $a \in (0.15, 0.22)$, $a_0 = 0.2$ and $(x_0, y_0) = (1.6, 1.5)$.

The unique nonhyperbolic equilibrium point in parametric regions R_{21} , R_{22} and R_{23}

- For parameter values (p, k) in the regions R_{21} , R_{22} , or R_{23} , if $a = \tilde{a} = \frac{(k-p-1)^{k-p-1}}{(k-p)^{k-p}}$, there is unique equilibrium point $\bar{x} = \frac{k-p}{k-p-1}$ and it is nonhyperbolic.
- If (p, k) ∈ R₂₂, the equilibrium point x̄ is unstable since one of the eigenvalues of the associated map is greater then one.
- If (p, k) ∈ R₂₁, by using the center manifold theory we prove that the unique equilibrium point x̄ is semi-stable.

Figure: Trajectories of the initial points near the unique nonhyperbolic equilibrium point

The unique nonhyperbolic equilibrium point in R_{23}

- ► To investigate stability of the unique equilibrium point \bar{x} in the region R_{23} we observe intriguing dynamical phenomena while varying two parameters, the point (a, k) in a sufficiently small neighborhood of the point $(a_0, k_0) = \left(\frac{(p-1)^{p-1}}{p^p}, 2p\right)$.
- We discuss the 1 : 1 resonance and the existence of a Bogdanov-Takens codimension-2 bifurcation revealing the occurrence of fold and Neimark-Sacker bifurcations with codimension 1.

Figure: Maximum Lyapunov exponents for $(x_0, y_0) = (1.993, 1.993)$

Introduction

Equilibrium points and local stability

Behaviour of solutions in the neighborhood of a unique nonhyperbolic equilibrium point

Behaviour of solutions when there exist two positive equilibrium points

Local stability analysis in the case of two equilibrias

Theorem

If k > p + 1 and $a < \tilde{a} = \frac{(k-p-1)^{k-p-1}}{(k-p)^{k-p}}$, then equation (3) has two real positive equilibrium points $\bar{x}_1 < \bar{x}_2$, where \bar{x}_2 is a saddle point, and one of the following holds: (1) If $p \le 1 \lor (p > 1 \land k \ge 2p)$, then \bar{x}_1 is locally asymptotically stable.

(2) If
$$p > 1 \land k < 2p$$
, then

(a) if $\bar{x}_1 < \frac{p}{p-1}$, then \bar{x}_1 is locally asymptotically stable,

(b) if
$$\bar{x}_1 = \frac{p}{p-1}$$
, then \bar{x}_1 is nonhyperbolic,
(c) if $\bar{x}_1 > \frac{p}{p-1}$, then \bar{x}_1 is a repeller.

Collision of the locally asymptotically stable and a saddle equilibrium point in the region R_{23}

Figure: $(p, k) = (2, 4) \in R_{23}$

Local stability of the equilibrium \bar{x}_1 in the parametric region R_{22}

For
$$(p, k) \in R_{22}$$
 and $a = a_0 = \frac{(p-1)^{k-p-1}}{p^{k-p}}$, the equilibrium point $\bar{x}_1 = \frac{p}{p-1}$ is nonhyperbolic.

Figure: Local stability of the equilibrium \bar{x}_1 for parametric values $(p, k) = (4, 6) \in R_{22}.$

The nonhyperbolic equilibrium point \bar{x}_1 and Neimark-Sacker bifurcation in the region R_{22}

- The subcritical Neimark-Sacker bifurcation occurs at \bar{x}_1 .
- In the small neighborhood of a₀, such that a < a₀, closed invariant curve Γ(a) encircling x
 ₁ appears.
- All solutions that start in the interior of this curve, converge to x
 ₁, and this curve is repelling for all solutions that start in the exterior of this curve.

Figure: Trajectories and invariant curve (red) for parametric values $(p, k) = (4, 6), a_0 = 0.1875, a = 0.187$

Bifurcation diagram and Maximum Lyapunov exponents

Figure: Bifurcation diagram and Maximum Lyapunov exponents for parametric values $(p, k) = (4, 6) \in R_{22}$, $a \in (0.15, 0.187)$ and $(x_0, y_0) = (1.35, 1.28)$.

THANK YOU

References I

- Berkal, M. & Navarro, J. F. [2023] "Qualitative study of a second-order difference equation," *Turkish J. Math.*, 47(2), 516–527. https://doi.org/10.55730/1300-0098.3375.
- [2] E. Bešo, S. Kalabušić, N. Mujić, E. Pilav, Boundedness of solutions and stability of certain second-order difference equation with quadratic term, Adv Differ Equ 2020, 19 (2020).
- [3] R.E. Haymond, E.S. Thomas, *Phase portraits for a class of difference equations* J. Differ. Equ. Appl. 5, 177–202 (1999)
- [4] W. T. Jemieson, O. Merino, Local dynamics of planar maps with a non-isolated fixed point exhibiting 1-1 resonance, Advances in Difference Equations (2018) 2018:142
- [5] T. Khyat, M.R.S. Kulenović and E. Pilav, *The Naimark-Sacker bifurcation and symptotic approximation of the invariant curve of a certain diference equation*, J.Computational Analysis and Applications, Vol.23, No.8, 2017.

References II

- [6] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations, with Open Problems and Conjectures, Chapman& Hall/CRC Press, 2001.
- [7] Kuznetsov, Yu. A. [2023] *Elements of Applied Bifurcation Theory*, 4th ed., Springer Cham.
- [8] Kuznetsov, Yu. A. & Meijer, H. G. E. [2005] "Numerical normal forms for codim 2 bifurcations of fixed points with at most two critical eigenvalues," *SIAM J. Sci. Comput.* 26(6), 1932–1954. https://doi.org/10.1137/030601508.
- [9] Murakami, K. [2001] "The invariant curve caused by Neimark-Sacker bifurcation," *Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.* 9(1a), 121–132.
- [10] Kuznetsov, Yu. A. & Meijer, H. G. E. [2019] Numerical Bifurcation Analysis of Maps: From Theory to Software, Cambridge Monogr. Appl. Comput. Math., Cambridge University Press.