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Introduction

▶ We consider the second-order rational difference equation

xn+1 = C + A
xkn
xpn−1

, (1)

where k , p, A, C > 0 and x−1, x0 > 0.

▶ The change of variable
xn 7→ Cxn (2)

transforms equation (1) into the following topological conjugate
equation

xn+1 = 1 + a
xkn
xpn−1

, (3)

where a = AC k−p−1 > 0.
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Motivation

▶ Stević proved the global stability of the positive equilibrium in the
case k = p ∈ (0, 1] and investigated the boundedness of positive
solutions of the equation

xn+1 = α +
xk
n

xp
n−1

, (4)

▶ Khyat et al. computed the direction of the Neimark-Sacker
bifurcation and gave the asymptotic approximation of the invariant
curve of the equation (4) in the case when k = p = 2.

▶ Bešo et al. established boundedness, global attractivity, and
Neimark-Sacker bifurcation results for the equation (3) for
k = 1, p = 2 and gave the asymptotic approximation of the invariant
curve near the unique equilibrium point.

▶ Berkal and Navarro performed a local stability analysis of the positive
equilibrium of the equation (3) in the case when k = p − 1 with
k ≥ 1, and studied the existence of the Neimark-Sacker bifurcation.

▶ We demonstrate a complete characterization of the number and
uniqueness of positive equilibrium points of equation (3) and it’s
dynamics in the bi-parameter space revealing various well-organized
structures with both regular and chaotic oscillations.
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Equilibrium points

Proposition
Let a, k, p be positive real numbers and ã = (k−p−1)k−p−1

(k−p)k−p .

(1) The equation (3) has a unique
positive equilibrium if one of the
following conditions holds:

(a) k < p + 1,
(b) k = p+1 and 0 < a < 1,
(c) k > p + 1 and a = ã.

(2) The equation (3) has two
positive equilibrium points if:

k > p + 1 and a < ã.

(3) The equation (3) has no
positive equilibrium if:

(a) k > p + 1 and a > ã.
(b) k = p + 1 and a ≥ 1.
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Figure: Parametric regions in
(p, k)-plane
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Contributions

▶ Stević proved:
▶ The equation has positive solutions

that are unbounded if k2 ≥ 4p > 4
or k ≥ 1 + p with p ≤ 1.

▶ All positive solutions to the equation
are bounded if k2 < 4p or
2
√
p ≤ k < 1 + p with p ∈ (0, 1).

▶ Positive equilibrium x̄ = α+ 1 is
globally asymptotically stable for
k = p ∈ (0, 1].

▶ Khyat et al. considered the parametric
point (p, k) = (2, 2).

▶ Bešo et al. considered the parametric
point (p, k) = (2, 1).

▶ Berkal and Navarro considered the
parametric values on the line k = p− 1
with k ≥ 1.
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Local stability analysis of the unique equilibrium point

Theorem
The unique equilibrium point x̄ of
equation (3) is
(1) locally asymptotically stable if

k ≤ p+1∧
(
p ≤ 1 ∨

(
p > 1 ∧ x̄ <

p

p − 1

))
,

(2) repeller if

k ≤ p + 1 ∧ p > 1 ∧ x̄ >
p

p − 1
,

(3) nonhyperbolic if one of the
following is true

(a) k ≤ p + 1 ∧ p > 1 ∧ a = a0,

a0 =
(p−1)k−p−1

pk−p ,

(b) k > p + 1 ∧ a = ã,

ã = (k−p−1)k−p−1

(k−p)k−p .
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Figure: Regions of local stability
scenarios in parametric spaces

(p, k) and (p, x̄)
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The unique nonhyperbolic equilibrium point in the
parametric region R13

▶ If (p, k) belongs to the region R13, then there is a unique equilibrium
point x̄ of (3) regardless of the value of a > 0.

▶ For parametric value a = a0 =
(p−1)k−p−1

pk−p the equilibrium point

x̄ = p
p−1 is nonhyperbolic.

(a) (p, x̄) ∈ S1 , (b) (p, x̄) ∈ S2 (c) (p, x̄) ∈ S3

Figure: Numerical simulations for parametric values (p, k) = (2.1901, 2.6901) ∈ R13
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Existence of Neimark-Sacker bifurcation in the region R13

▶ If (p, k) ∈ R13 the supercritical Neimark-Sacker bifurcation appears
when a passes through the bifurcation value a0.

▶ There exists a neighborhood U of the equilibrium point (x̄ , x̄) such
that the ω-limit set of solutions with initial conditions x0, x−1 ∈ U
is (x̄ , x̄) if a < a0, and belongs to a closed invariant C 1 curve Γ(a)
encircling the equilibrium point (x̄ , x̄) if a > a0.

(a) a = 0.79 < a0 (b) a = 0.792 > a0

Figure: Trajectories and invariant curve (red) for parametric values
(p, k) = (4, 1) ∈ R13 and a0 = 0.790123
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Bifurcation diagram and Maximum Lyapunov exponents
for parametric values in the region R13
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Figure: a ∈ (0.5, 5) and (x0, y0) = (1.4, 1.2)
(p, k) = (4, 1) ∈ R13,a0 = 0.790123
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The unique nonhyperbolic equilibrium point in the
parametric region R12

▶ If (p, k) lies on the line R12 and 0 < a < 1, then equation (3) has a
unique equilibrium point x̄ .

▶ For parametric value a = a0 =
1
p and p > 1 the unique equilibrium

point x̄ = p
p−1 is nonhyperbolic.

(a) (p, x̄) ∈ S1 , (b) (p, x̄) ∈ S2 (c) (p, x̄) ∈ S3

Figure: Numerical simulations for parametric values (p, k) = (4, 5) ∈ R12
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The unique nonhyperbolic equilibrium point in the
parametric region R12

▶ Using Wolfram Mathematica, we obtain that the first and the
second Lyapunov coefficients are zero,

ℓ1(0) = 0, ℓ2(0) = 0.

▶ Unique equilibrium point is a Hopf point of codimension 3.

(a) (x0, y0) = (1.6, 1.5) (b) (x0, y0) = (2, 1.4) (c) (x0, y0) = (2.1, 2.1)

Figure: (p, k) = (5, 6), a = a0 = 0.2, n = 1100000
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(a) (x0, y0) = (1.6, 1.5) (b) (x0, y0) = (2, 1.4) (c) (x0, y0) = (2.1, 2.1)

Figure: (p, k) = (5, 6), a = 0.199999 < a0, n = 1100000

(a) (x0, y0) = (1.6, 1.5),
n = 180000

(b) (x0, y0) = (2, 1.4),
n = 47000

(c) (x0, y0) = (2.1, 2.1),
n = 12000

Figure: (p, k) = (5, 6), a = 0.200001 > a0
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Bifurcation diagram and Maximum Lyapunov exponents
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Figure: (p, k) = (5, 6), a ∈ (0.15, 0.22), a0 = 0.2 and (x0, y0) = (1.6, 1.5).
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The unique nonhyperbolic equilibrium point in parametric
regions R21, R22 and R23

▶ For parameter values (p, k) in the regions R21, R22, or R23, if

a = ã = (k−p−1)k−p−1

(k−p)k−p , there is unique equilibrium point x̄ = k−p
k−p−1

and it is nonhyperbolic.
▶ If (p, k) ∈ R22, the equilibrium point x̄ is unstable since one of the

eigenvalues of the associated map is greater then one.
▶ If (p, k) ∈ R21, by using the center manifold theory we prove that

the unique equilibrium point x̄ is semi-stable.

(a) (p, k) ∈ R21, (b) (p, k) ∈ R22 (c) (p, k) ∈ R23

Figure: Trajectories of the initial points near the unique nonhyperbolic equilibrium point
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The unique nonhyperbolic equilibrium point in R23

▶ To investigate stability of the unique equilibrium point x̄ in the
region R23 we observe intriguing dynamical phenomena while varying
two parameters, the point (a, k) in a sufficiently small neighborhood

of the point (a0, k0) =
(

(p−1)p−1

pp
, 2p

)
.

▶ We discuss the 1 : 1 resonance and the existence of a
Bogdanov-Takens codimension-2 bifurcation revealing the occurrence
of fold and Neimark-Sacker bifurcations with codimension 1.
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(a) (p, k) = (2, 4),
a ∈ (0.15, 0.26), a0 = 0.25

(b) p = 2, k ∈ (3.8, 4.25),
a ∈ (0.15, 0.35), (a0, k0) = (0.25, 4)

Figure: Maximum Lyapunov exponents for (x0, y0) = (1.993, 1.993)
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Local stability analysis in the case of two equilibrias

Theorem
If k > p + 1 and a < ã = (k−p−1)k−p−1

(k−p)k−p ,

then equation (3) has two real positive
equilibrium points x̄1 < x̄2, where x̄2 is a
saddle point, and one of the following holds:
(1) If p ≤ 1 ∨ (p > 1 ∧ k ≥ 2p), then x̄1 is

locally asymptotically stable.

(2) If p > 1 ∧ k < 2p, then

(a) if x̄1 <
p

p−1
, then x̄1 is locally

asymptotically stable,
(b) if x̄1 =

p
p−1

, then x̄1 is nonhyperbolic,
(c) if x̄1 >

p
p−1

, then x̄1 is a repeller.
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Collision of the locally asymptotically stable and a saddle
equilibrium point in the region R23

(a) Locally asymptotically stable x̄1 (red)
and a saddle x̄2 (blue) equilibrium points

a = 0.249 < ã, (p, x̄1) ∈ S1

(b) Nonhyperbolic equilibrium point
a = ã = 0.25,

(p, x̄1) = (p, x̄2) ∈ S2

Figure: (p, k) = (2, 4) ∈ R23
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Local stability of the equilibrium x̄1 in the parametric
region R22

▶ For (p, k) ∈ R22 and a = a0 =
(p−1)k−p−1

pk−p , the equilibrium point

x̄1 =
p

p−1 is nonhyperbolic.

(a) (p, x̄1) ∈ S1 ,
a = 0.18 < a0

(b) (p, x̄1) ∈ S2 ,
a = 0.1875 = a0

(c) (p, x̄1) ∈ S3 ,
a = a0 > 0.1877

Figure: Local stability of the equilibrium x̄1 for parametric values
(p, k) = (4, 6) ∈ R22.
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The nonhyperbolic equilibrium point x̄1 and
Neimark-Sacker bifurcation in the region R22

▶ The subcritical Neimark-Sacker bifurcation occurs at x̄1.
▶ In the small neighborhood of a0, such that a < a0, closed invariant

curve Γ(a) encircling x̄1 appears.
▶ All solutions that start in the interior of this curve, converge to x̄1,

and this curve is repelling for all solutions that start in the exterior
of this curve.

Figure: Trajectories and invariant curve (red) for parametric values
(p, k) = (4, 6), a0 = 0.1875, a = 0.187
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Bifurcation diagram and Maximum Lyapunov exponents
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Figure: Bifurcation diagram and Maximum Lyapunov exponents for parametric
values (p, k) = (4, 6) ∈ R22, a ∈ (0.15, 0.187) and (x0, y0) = (1.35, 1.28).
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