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Universitat Autònoma de Barcelona

http://www.mat.uab.cat/∼alseda

in collaboration with David Juher, Francesc Mañosas and Jérôme Los
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Geometric group theory

Devoted to the study of the algebraic properties of finitely
generated groups via the geometric and topological properties of
the spaces on which such groups act.

Often, finitely generated groups G themselves are considered as
geometric objects, after endowing them with a metric (usually, the
word metric) that assigns a distance to any pair x , y of elements of
G defined as the length of the shortest word W , written in terms
of the generators of G , such that x = Wy .

Here when we say generators we mean and their inverses.
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Presentations

A presentation ⟨X |R⟩ of a finitely generated group G is a set X of
generators and a set R of relations (words equivalent to the
identity element of G ).

Example: ⟨a, b | abāb̄⟩ Classical presentation for the fundamental
group of a torus (genus g = 1, rank 2g = 2).
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Presentations

Example: ⟨a, b, c , d | abāb̄cdc̄d̄⟩ Classical presentation for the
fundamental group of a double torus (genus g = 2, rank 2g = 4).

⟨a, b, c , d , e | acded̄ b̄, ē c̄bā⟩ An exotic presentation for the same
group.
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Presentations

⟨a, b | a2b2⟩
⟨a, b | abāb⟩ Classical presentations for the fundamental group of a
Klein bottle (nonorientable surface of rank 2).

⟨a, b, c | a2b2c2⟩ Classical presentation for the fundamental group
of the nonorientable surface of rank 3.

⟨a, b, c , d | acdb, cadb̄⟩ An exotic presentation for the same group.
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Word metric

Given a presentation P = ⟨X |R⟩ of G and x ∈ G , we define
lengthP(x) as the number of symbols of a minimal word in the
alphabet X ∪ X̄ representing x .

Example: P = ⟨a, b, c , d | acdb, cadb̄⟩

x = acdcad = accadd = acbd = accadc̄āb̄

lengthP(x) = 4
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A curiosity

For the presentation

P = ⟨a, b, c , d , p, q, r , t, k | p10a = ap, p10b = bp, p10c = cp,
p10d = dp, p10e = ep, aq10 = qa, bq10 = qb, cq10 = qc ,
dq10 = qd , eq10 = qe, pacqr = rpcaq, p2adq2r = rp2daq2,
p3bcq3r = rp3cbq3, p4bdq4r = rp4dbq4, p5ceq5r = rp5ecaq5,
p6deq6r = rp6edbq6, p7cdcq7r = rp7cdceq7, p8ca3q8r = rp8a3q8,
p9da3q9r = rp9a3q9, ā3ta3k = kā3ta3, ra = ar , rb = br , rc = cr ,
rd = dr , re = er , pt = tp, qt = tq⟩

the problem of determining whether two words represent the same
element of the group (word decision problem) is unsolvable.
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Cayley graph of (a presentation of) G

It is a directed combinatorial graph, whose vertices are identified
with the elements of G . Given any vertex g and any generator a,
there is an edge labeled as a going from g to ga, and an edge also
labeled as a going from gā to g .

g

a
ga

a

gā

It’s a regular graph since all vertices have the same degree, 2|X |.

G acts on the Cayley graph by right product: words = paths.
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Cayley graph of (a presentation of) G

⟨a, b | abāb̄⟩ Classical presentation for the fundamental group of a
torus

Id a

b ba

b

a

b

a

a

b

a

ā

bā

bb

b

a

b̄a

a

b̄
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Cayley graph of (a presentation of) G

⟨a, b, c | a2b2c2⟩ Classical presentation of a nonorientable surface
of rank 3

Id

a

a

b b

c

c
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Cayley graph of (a presentation of) G

⟨a, b, c , d | abāb̄cdc̄d̄⟩ Classical presentation for the fundamental
group of a double torus
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Volume entropy

Let G be a finitely generated group and let P = ⟨X |R⟩ be a
presentation of G .

σm := Card{g ∈ G : lengthP(g) = m},

is the number of vertices at distance m from the identity in the
Cayley graph.

Its exponential growth rate is called the volume entropy, defined as

hvol(G ,P) = lim
m→∞

1

m
log(σm).

It is not a group invariant: it depends on the presentation.
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Volume entropy

An example: the free group G = ⟨a1, a2, . . . , aN | ∅⟩ of rank N.

m = 1 : a, b, ā, b̄ −→ σ1 = 4
m = 2 : aa, ab, ab̄, ba, bb, bā, āb, āā, āb̄, b̄a, b̄ā, b̄b̄ −→ σ2 = 12

...

...

σm = 2N(2N − 1)m−1

hvol(G ,P) = lim
m→∞

1

m
log(σm) = log(2N − 1)
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The context

We will consider geometric presentations of fundamental groups
of (orientable and non-orientable) surfaces of rank N ≥ 3.
Equivalently, of negative Euler characteristic. Equivalently (for
orientable surfaces), of genus g ≥ 2.

A presentation is called geometric if the associated Cayley graph
is planar.

All previously shown presentations were geometric.

⟨a, b, c , d | d̄acdb, cd̄adb̄⟩ is a non-geometric presentation for the
double torus group.
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The context: hyperbolicity

We note that the considered surfaces (rank N ≥ 3) are hyperbolic
in the geometrical sense: they can be endowed with a hyperbolic
metric (each point has an open neighbourhood isometric to the
hyperbolic plane).

The corresponding fundamental groups are hyperbolic in the
geometric group theory sense [Gromov, 1980]: for the associated
Cayley graph, there is a constant δ such that every geodesic
triangle is δ-thin.

The family of all hyperbolic groups has some nice properties. For
instance, the word decision problem is solvable.
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Geometric presentations

Lemma 1

Let P = ⟨X |R⟩ = ⟨x1, x2, . . . , xN |R1,R2, . . . ,Rk⟩ be a geometric
presentation of a surface group G . Then,

a The set {x±1
1 , . . . , x±1

N } admits a cyclic ordering that is
preserved by the G -action.

b Each generator appears exactly twice (with plus or minus
exponent) in the set R of relations.

c Let a, b be a pair of adjacent generators according to the
cyclic ordering given by (a). Then, there is exactly one
relation Ri such that a cyclic shift of Ri contains either b

−1a
or a−1b as a sub-word.
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Lemma (a): a fundamental geometrical property

The set {x±1
1 , . . . , x±1

N } admits a cyclic ordering that is preserved
by the G -action.

Id

a

a

b b

c

c

c
c

b

b

a

a
c

c

P = 〈a, b, c | a2b2c2〉

Cyclic ordering:

(a, ā, b, b̄, c, c̄)

a
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Geometricity test

The Lemma can be used to construct an algorithm that takes as
input a presentation P and tests whether P is geometric.

P1 = ⟨a, b, c , d | adac, cbdb⟩

P2 = ⟨a, b, c, d , e | abc, ceā, bc̄d2⟩

P3 = ⟨a, b, c , d | abab̄d , c2d⟩

P2 is not geometric since it does not satisfy Lemma (b).

P1,P3 satisfy Lemma (b),
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Geometricity test

but P1 = ⟨a, b, c , d | adac, cbdb⟩ does not satisfy (a):

d

a

c

a

R1

b

d

b

c

R2

1

4 2

3

a

d
a

c

b

d
b

c

b

da

c
a

R1

R̄2

R2

R̄1

The numbered circles with a number k indicate the angles used to
attach the cell at step k of the algorithm. After 3 steps we cannot
continue.
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Geometricity test

P3 = ⟨a, b, c , d | abab̄d , c2d⟩

a

b
a

b

d

c

d

c

c

d

c

a
b

a

b

a
b

d

b

a

a

d

b

a

d

Round of 8 steps completed: P3 is a geometric presentation.
Obtained cyclic ordering: (a, d̄ , c , c̄ , d , b, ā, b̄).
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Main goal

Construct an algorithm that takes as input a presentation P of a
surface group, checks whether P is geometric and, in the
affirmative, computes the associated volume entropy.

This problem is solved in a very general setting by manipulating
word lengths uses the cone approach. However, it admits a
beautiful dynamical approach that relates the volume entropy with
the topological entropy of an induced map at the infinity. We
believe that this dynamical approach gives insight on the word
lengths growth mechanisms.
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Main goal

The paper

Ll. Alsedà, D. Juher, J. Los, F. Mañosas, On families of
Bowen-Series-like maps for surface groups, Regul. Chaotic
Dyn., 28(4-5), 659-667. 2023.

solves the problem of computing algorithmically the volume
entropy of any geometric presentation of a surface group of rank
N ≥ 3 (hyperbolic groups).

The program is written in Maple and Maxima and is freely
available to the scientific community.
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Boundary ∂G of a hyperbolic group G [Gromov, 1980]

A geodesic ray is an infinite word in the alphabet X ∪ X̄ such that
any finite subword is geodesic. Equivalently, an infinite unbounded
path in the Cayley graph starting at Id such that every subsegment
is geodesic.

The boundary ∂G of G is a topological, metric space. Any point
in the boundary is an equivalence class of geodesic rays that
remain at a uniform bounded distance from each others.

In our context, ∂G = S1.
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Cylinders

The cylinder Cx for a generator x ∈ X ∪ X̄ is the subset of points
ζ ∈ ∂G such that there exists a ray (infinite word) W converging
to ζ and starting with x .

Lemma 2

The cylinders satisfy:

a Cx is connected and Cx ∩ Cy ̸= ∅ if and only if x and y are
adjacent generators in the cyclic ordering. In this case it is an
interval.

b For any θ ∈ Cx ∩ Cy , there is an infinite word W such that
θ ∈ ∂G has two geodesic ray expressions LxW and LyW ,
where {Lx , Ly} are the two geodesic segments of the minimal
bigon β(x , y).
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Minimal bigons

If we complete the cells adjacent to Id up to the closest vertices for
which there is geodesic ambiguity, we get what we call the minimal
bigons. It turns out that this is all we need to compute the volume
entropy. P3 = ⟨a, b, c , d | abab̄d , c2d⟩

a

b
a

b

d

c

d

c

c

d

c

a
b

a

b

a
b

d

b

a

a

d

b

a

d

a

b

b

d

c

c

d

a

a

b

a

d

b

a

d

b

a

d

b

a

b

c

d

b

a

b

a

d

c

d

a

b

a

a

b

d

a

b

d

a

b

c

c

b

a

b

c

β(b̄, a)

β(a, d̄)
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Cylinders

a

b

b

d

b

a

d

b

a

b
c

c

b

Cb̄ ∩ Ca Ca ∩ Cd̄

Id

∈ Cb̄ \ Ca

Ca
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Notation

The elements of X ∪ X̄ will be denoted by x1, x2, . . . , x2N , where
the indices are defined modulo 2N, in such a way that xj is
adjacent to xj±1 in the cyclic ordering given by Lemma 1(a).

x1

x2

xN

xN+1

xN+2

x2N
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Cutting points

By Lemma 2(b) there are 2N disjoint intervals

Jj := Cxj−1 ∩ Cxj ⊂ S1.

For each Θ := (θ1, θ2, . . . , θ2N) ∈ J1 × J2 × . . .× J2N we consider
the finite partition of S1 given by the intervals

Ij := [θj , θj+1) ⊂ S1.

The points θj are called cutting points and Θ is called the
cutting parameter.
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Cutting points

a

b

b

d

b

a

d

b

a

b
c

c

b

θd̄

θa

Ia

Cb̄ ∩ Ca Ca ∩ Cd̄

Id
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Cutting points and codings

When choosing a particular Θ = (θ1, θ2, . . . , θ2N), we are fixing the
coding of any point z ∈ S1 as an infinite word in the alphabet
X ∪ X̄ .

a

b

b

d

b

a

d

b

a

b
c

c

b

θd̄

Ia

Cb̄ ∩ Ca Ca ∩ Cd̄

Id

θa

z = ab̄c̄ · · ·
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Compare with

a

b

b

d

b

a

d

b

a

b
c

c

b

θd̄

θa

Ia

Cb̄ ∩ Ca Ca ∩ Cd̄

Id

z = b̄āc · · ·
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Bowen-Series-like maps

For each cutting parameter Θ := (θ1, θ2, . . . , θ2N) we consider the
map

ΦΘ : S1 −→ S1 such that ΦΘ(z) = x−1
j (z) if z ∈ Ij .

Such a map is called a Bowen-Series-like map.

From the combinatorial point of view (points = infinite words), we
are simply deleting the first symbol: ΦΘ(xjabcd · · · ) = abcd · · ·
So, ΦΘ is nothing but the standard shift map.

Parameter Θ ⇔ Partition S1 =
⋃2N

j=1 Ij
⇔ Fixed word for each z ∈ S1 ⇔ Shift map ΦΘ
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Bowen-Series-like maps

We have thus a family of maps ΦΘ indexed by
Θ = (θ1, θ2, . . . , θ2N), the cutting parameter.

Properties:

1 ΦΘ

∣∣
Ij
is a homeomorphism onto its image.

2 At the cutting points the map is not continuous.

ΦΘ is, thus, a piecewise homeomorphism of ∂G = S1.
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a d̄ c c̄ d b ā b̄

a

d̄

c

c̄

d

b

ā

b̄

a

d̄

c

c̄

d

b

ā

b̄

a

b

b

d

c

c

d

a

a

b

a

d

b

a

d

b

a

d

b

a

b

c

d

b

a

b

a

d

c

d

a

b

a

a

b

d

a

b

d

a

b

c

c

b

a

c

θa
θd̄

Ia
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Topological entropy

Defined for continuous (Adler, Konheim, McAndrew) and
discontinuous (Bowen) self-maps maps of compact spaces. For
piecewise continuous piecewise monotone maps Φ: S1 −→ S1 of
the circle, it can be defined as follows (Misiurewicz, Ziemian).

Let S1 =
⋃2N

j=1 Ij be a partition of S1 by intervals such that Φ
restricted to each Ij is a homeomorphism.

For m ∈ N, the itinerary intervals of level m are defined as

Ij0,j1,...,jm−1 := Ij0 ∩ Φ−1(Ij1) ∩ . . . ∩ Φ−(m−1)(Ijm−1)

Xm := number of non-empty intervals Ij0,j1,...,jm−1 of level m.

htop(Φ) = lim
m→∞

1

m
log(Xm)
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The main theorem

hvol(G ,P) = lim
m→∞

1

m
log(σm)

htop(ΦΘ) = lim
m→∞

1

m
log(Xm)

Proposition

The following inequalities are satisfied for each parameter Θ:

σm ≤ Xm ≤ mσm.

Main Theorem

Let G be a surface group of rank larger than 2 and let P be any
geometric presentation of G . Then, for any cutting parameter Θ,
htop(ΦΘ) = hvol(G ,P)= log(λ), where 1/λ is the smallest root in
(0, 1) of an integer polynomial QP(t) that can be explicitly
computed from P.
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Comments

The entropy stability property inside the family of
Bowen-Series-like maps ΦΘ is remarkable, since the dynamics of
two different maps in the family are quite different, in particular
they are not pairwise topologically conjugate or even
semi-conjugate. For some choices of the parameters Θ the map
ΦΘ is Markov, unlike for other choices.

The theorem states that the volume entropy of the group
presentation P can be computed as the inverse of a real root of an
integer polynomial that can be algorithmically obtained from P,
by using the Milnor-Thurston theory of kneading invariants.
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Milnor-Thurston kneading invariants

The theory was originally stated for continuous piecewise
monotone maps f of the interval. It states that the entropy of f
can be computed knowing the itineraries of the turning points
(points separating maximal intervals of monotonicity of f ).

It can be adapted (Alsedà, Mañosas) to our context (piecewise
continuous, piecewise monotone maps ΦΘ of the circle) by
considering the interval map Φ̂Θ : [0, 1] −→ [0, 1] defined as

Φ̂Θ(x) = Φ̃Θ(x)− E (Φ̃Θ(x)),

where Φ̃Θ is the lifting of ΦΘ and E (y) is the integer part of y .

It is necessary to consider the discontinuity points as turning
points.
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a d̄ c c̄ d b ā b̄

a

d̄

c

c̄

d

b

ā

b̄

a

d̄

c

c̄

d

b

ā

b̄

a d̄ c c̄ Id b ā b̄

a

d̄

c

c̄

d

b

ā

b̄

ΦΘ

̂
ΦΘ(x) = Φ̃Θ(x)− E(Φ̃Θ(x))

I
r

d̄

I
l

d I
r

d

θd
θb

md
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Milnor-Thurston kneading invariants

Set of turning points:

θa <ma <θd̄ <md̄ <θc <mc <θc̄ <mc̄ <θd <md <θb <θā <θb̄ <mb̄.

The number and ordering of the intervals in the partition is
independent of the particular choice of the cutting points θxi .

Now we must find the dynamical itinerary of each turning point
from the left and from the right. So, now we need to precise the
map ΘΦ. In other words, we need to choose the cutting points
Θ = (θ1, θ2, . . . , θ2N). Recall that any choice leads to the same
entropy! So, we are free.
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Milnor-Thurston kneading invariants

The cutting points θi have geodesic ambiguity

θi = L · · · = R · · ·

up to the top vertex v of the bigon β(xi−1, xi ) = {L,R}.

Choice: we choose the cutting point θi in such a way that there is
no geodesic ambiguity from v :

θi = LW = RW

for a unique infinite word W . Equivalently, the word W
corresponds to a point that does not belong to the intersection of
cylinders. In particular, is not a cutting point.
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Milnor-Thurston kneading invariants

a

b

b

d

c

c

d

a

a

b

a

d

b

a

d

b

a

d

b

a

b

c

d

b

a

b

a

d

c

d

a

b

a

a

b

d

a

b

d

a

b

c

c

b

θd̄

c

b

d

b

c

d

b

b

θd̄(+) ∈ I l
d̄
, Φ(θd̄)(+) ∈ Ib, Φ2(θd̄)(+) ∈ Ib, Φ3(θd̄)(+) ∈ I ra .

θd̄(−) ∈ I ra , Φ(θd̄)(−) ∈ Ib, Φ2(θd̄)(−) ∈ I l
d̄
,Φ3(θd̄)(−) ∈ Ib
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Milnor-Thurston kneading invariants

θd̄(+) ∈ I l
d̄
, Φ(θd̄)(+) ∈ Ib, Φ2(θd̄)(+) ∈ Ib, Φ3(θd̄)(+) ∈ I ra .

θd̄(−) ∈ I ra , Φ(θd̄)(−) ∈ Ib, Φ2(θd̄)(−) ∈ I l
d̄
,Φ3(θd̄)(−) ∈ Ib

Now we consider the formal symbols

ω0(θ
+
d̄
) = I l

d̄
, ω1(θ

+
d̄
) = Ib, ω2(θ

+
d̄
) = −Ib, ω3(θ

+
d̄
) = I ra ,

ω0(θ
−
d̄
) = I ra , ω1(θ

−
d̄
) = Ib, ω2(θ

−
d̄
) = −I l

d̄
, ω3(θ

−
d̄
) = −Ib,

where the signs +/− correspond to the increasing/decreasing
character of the corresponding iterate of the map.
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Milnor-Thurston kneading invariants

Finally we construct the jump series for θd̄ , a formal power series
in the alphabet of the intervals {I la, I ra , . . .}:

νj(θd̄) = Ωvj (t) =
∞∑
i=0

(
ωi (θ

+
d̄
)− ωi (θ

−
d̄
)
)
t i .

By the choice of the cutting point θd̄ , the jump series vanishes
beyond the length of the minimal bigon. So, it reduces to a
polynomial:

νθd (t) = (I l
d̄
− I ra ) + (−Ib + I l

d̄
)t2 + (I ra + Ib)t

3
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Milnor-Thurston kneading invariants

List of kneading invariants (Ix , I
l
x , I

r
x replaced by x , xl , xr ):

νθa(t) = (al − b̄r ) + (b̄l + ā)t + (−c̄r + cr )t
2

νma(t) = (ar − al) + tνθa(t)
νθd̄ (t) = (d̄l − ar ) + (−b + d̄l)t

2 + (ar + b)t3

νmd̄
(t) = (d̄r − d̄l) + tνθa(t)

νθc (t) = (cl − d̄r ) + (−d̄l − cr )t
νmc (t) = (cr − cl) + tνθa(t)
νθc̄ (t) = (c̄l − cr ) + (−ar + b)t + (−b − ā)t2

νmc̄ (t) = (c̄r − c̄l) + tνθa(t)
νθd (t) = (dl − c̄r ) + (c̄r + dl)t
νmd

(t) = (dr − dl) + tνθa(t)
νθb(t) = (b − dr ) + (−ā− ar )t + (−ā− dr )t

2 + (−b̄l − ar )t
3

νθā(t) = (ā− b) + (d̄l + ar )t + (ā+ al)t
2 + (d̄r + b̄l)t

3

νθb̄(t) = (b̄l − ā) + (−dl − b̄r )t + (−b̄r + b̄l)t
2 + (ā− dl)t

3

νmb̄
(t) = (b̄r − b̄l) + tνθa(t)
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Milnor-Thurston kneading invariants

Finally, we formally write the above kneading invariants as a linear
combination of the base

(al , ar , d̄l , d̄r , cl , cr , c̄l , c̄r , dl , dr , b, ā, bl , br )

and organize the coefficients of all invariants but the first one in
matrix form, obtaining the following 13× 14 kneading matrix:
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Milnor-Thurston kneading invariants



−1 + t 1 0 0 0 t3 0 −t3 0 0 0 t2 t2 −t

0 −1 + t3 1 + t2 0 0 0 0 0 0 0 −t2 + t3 0 0 0

t 0 −1 1 0 t3 0 −t3 0 0 0 t2 t2 −t
0 0 −t −1 1 −t 0 0 0 0 0 0 0 0

t 0 0 0 −1 1 + t3 0 −t3 0 0 0 t2 t2 −t

0 −t 0 0 0 −1 1 0 0 0 t − t2 −t2 0 0

t 0 0 0 0 t3 −1 1 − t3 0 0 0 t2 t2 −t
0 0 0 0 0 0 0 −1 + t 1 + t 0 0 0 0 0

t 0 0 0 0 t3 0 −t3 −1 1 0 t2 t2 −t

0 −t − t3 0 0 0 0 0 0 0 −1 − t2 1 −t − t2 −t3 0

t2 t t t3 0 0 0 0 0 0 −1 1 + t2 t3 0

0 0 0 0 0 0 0 0 −t − t3 0 0 −1 + t3 1 + t2 −t − t2

t 0 0 0 0 t3 0 −t3 0 0 0 t2 −1 + t2 1 − t


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Milnor-Thurston kneading invariants

Now we delete any column (for instance, the first one) and
compute the determinant D of the obtained 13× 13 matrix. The
only factor of D containing real roots in [0, 1) is

t10−3t9−14t8−13t7−17t6−12t5−17t4−13t3−14t2−3t+1,

and the smallest root is λ ≈ 0.170554162.

The volume entropy of the presentation P3 is then

log(1/λ) ≈ log(5.86324007) .

Ll. Alsedà Volume entropy of surface groups: a dynamical approach 47/49



It all depends on the presentation

Analyzing carefully all steps, one realizes that all the information
used (graph of the map, minimal bigons, itineraries, kneading
invariants) depends, at the end, only on the presentation:

P3 = ⟨a, b, c , d | abab̄d , c2d⟩
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Examples
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