## Non-constant periodic solutions of the Ricker model with periodic parameters

### FangfangLiao, Na Sun, Yu Gu Xiangnan University

#### This is joint work with professors Xiaoping Wang, Fulai Chen

28<sup>th</sup> May 2025







Backgrounds



**Main results** 



**Numerical simulations** 



**Further questions** 



# Backgrounds







Consider the classic **discrete-time Ricker model** 

$$u_{n+1} = u_n \exp\left[r\left(1 - \frac{u_n}{k}\right)\right], \quad u_n > 0; n = 0, 1, 2, \dots,$$
 (1.1)

where  $u_n$  is the population size in generation n, r is the intrinsic growth rate, and k is

the carrying capacity of the environment.

The discrete-time Ricker model exhibits complex and rich dynamics even with

constant r and k. Its typical dynamical feature is the periodic-doubling bifurcation to chaotic behavior.





Table 1: Dynamics of a population described by the difference equation (1.1)

| Dynamical behavior                                                                               | Value of growth rate, r | Illustration        |
|--------------------------------------------------------------------------------------------------|-------------------------|---------------------|
| Globally stable equilibrium point                                                                | 2 > r > 0               | Fig. 1(a)           |
| Stable two-point cycle                                                                           | 2.526 > r > 2           | Fig. 1(b)           |
| Stable four-point cycle                                                                          | 2.656 > r > 2.526       | Fig. 1(c)           |
| Stable cycle, period 8, giving way in turn<br>to cycles of period 16, 32, etc. as r<br>increases | 2.692 > r > 2.656       |                     |
| Chaos (cycles of arbitrary period, or<br>aperiodic behavior, depending on initial<br>condition)  | r > 2.692               | Fig. 1(d), (e), (f) |

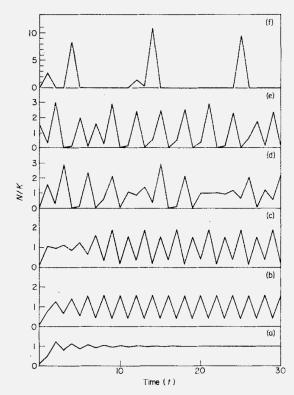


FIG. 1. Spectrum of dynamical behavior of the population density,  $N_t/K$ , as a function of time, t, as described by the difference equation (1) for various values of r. Specifically: (a) r = 1.8, stable equilibrium point; (b) r = 2.3, stable two-point cycle; (c) r = 2.6, stable four-point cycle; (d), (e), (f) are in the chaotic regime, where the detailed character of the solution depends on the initial population value, with (d) r = 3.3 ( $N_0/K = 0.075$ ) (e) r = 3.3 ( $N_0/K = 1.5$ ), (f) r = 5.0 ( $N_0/K = 0.02$ ).

 R. M. May, Biological populations obeying difference equations: stable points, stable cycles and chaos, J. Theo. Biol., 51 (1975), 511-524.





The corresponding continuous model is

$$\frac{du(t)}{dt} = u(t) \left[ r \left( 1 - \frac{u(t)}{k} \right) \right], \quad t \ge 0$$
(1.2)

whose dynamic behavior is very simple, that is to say, every positive solution of (1.2) tends to *k* as  $t \rightarrow \infty$ .

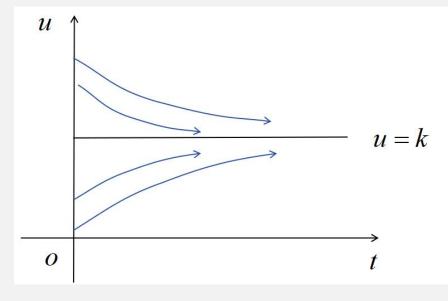


Figure 1.1



## Backgrounds



In some circumstances, the intrinsic growth rate and/or the carrying capacity may vary in time, particularly periodically. For model (1.1), if both the intrinsic growth rate and the carrying capacity change periodically and simultaneously with period  $\omega$  such that the model equation is

$$u_{n+1} = u_n \exp\left[r_n\left(1 - \frac{u_n}{k_n}\right)\right], \quad n = 0, 1, 2...,$$
 (1.3)

where  $r_{n+\omega} = r_n$  and  $k_{n+\omega} = k_n$  have common period  $\omega$ .

- S. Mohamad and K. Gopalsamy, Extreme stability and almost periodicity in a discrete logistic equation, Tohoku Math. J. 52, 107-125 (2000).
- Z. Zhou and X. Zou, Stable periodic solutions in a discrete periodic logistic equation, Appl.Math. Letters, 16(2003), 165-171.





The differential equation counterpart of (1.3) give by

$$\frac{du(t)}{dt} = u(t) \left[ r(t) \left( 1 - \frac{u(t)}{k(t)} \right) \right], \quad t > 0,$$
(1.4)

r(t) and K(t) can be assumed to be nonconstant periodic functions with a common period  $\omega$  to reflect the seasonal fluctuations. It has been shown that (1.4) has a positive  $\omega$ -periodic solution  $\tilde{x}(t)$  which attracts every positive solution x(t) of (1.4) as  $t \rightarrow \infty$ .

- B.D. Coleman, Nonautonomous logistic equations as models of the adjustment of populations to environ\_x0002\_mental changes, Math. Biosei. 45, 159-173 (1979).
- B.D. Coleman, Y.H. Hsieh and G.P. Knowles, On the optimal choice of r for a population in a periodic environment, Math. Biosci. 46, 71-85 (1979).
- K. Gopalsamy and X.Z. He, Dynamics of an almost periodic logistic integrodifferential equation, Methods Appl. Anal. 2, 38-66 (1995).





S. Mohamad et al considered equation (1.3), and obtained the following two main theorems.

**Theorem A:** Assume that  $\{r(n)\}$  and  $\{K(n)\}$  satisfy

 $0 < r_* \le r(n) \le r^*, 0 < K_* \le K(n) \le K^*, \quad n \in N$ 

where  $r_*$ ,  $r^*$ ,  $K_*$ , and  $K^*$  are positive constants .Then (1.3) is extremely stable in the sense that  $\lim_{n \to \infty} |r(n) - v(n)| = 0$ .

$$\lim_{n\to\infty}|x(n)-y(n)|=0,$$

for any two solutions  $\{x(n)\}$  and  $\{y(n)\}$  of (1.3).

**Theorem B:** Assume that  $\{r(n)\}$  and  $\{K(n)\}$  are almost periodic sequences satisfying  $0 < r_* \le r(n) \le r^*, 0 < K_* \le K(n) \le K^*, n \in N$  with  $r^* < 2$ . Then (1.3) has a unique positive and globally asymptoticly stable almost periodic solution.

• S. Mohamad and K. Gopalsamy, Extreme stability and almost periodicity in a discrete logistic equation, Tohoku Math. J. 52, 107-125 (2000).





Z.Zhou and X. Zou considered equation (1.3) with r(3n)=1, r(3n+1)=1.5, r(3n+2)=1,K(3n)=1, K(3n+1)=5, K(3n+2)=8,

for  $n \in N$ . Then (1.3) has a 3-periodic solution  $\tilde{x}(n)$ , where

 $\widetilde{x}(3n) = 3.2184, \quad \widetilde{x}(3n+1) = 0.3501, \quad \widetilde{x}(3n+2) = 1.4126, \quad for \quad n \in N,$ 

and a 6-periodic solution  $\{x^*(n)\}$  where

$$x^*(6n) = 5.6940, \quad x^*(6n+1) = 0.0521, \quad x^*(6n+2) = 0.2299,$$
  
 $x^*(6n+3) = 0.6072, \quad x^*(6n+4) = 0.8993, \quad x^*(6n+5) = 3.0774, \quad for \quad n \in N,$ 

• Z. Zhou and X. Zou, Stable periodic solutions in a discrete periodic logistic equation, Appl.Math. Letters, 16(2003), 165-171.





Z.Zhou and X. Zou proved that (1.3) has an  $\omega$ -periodic solution which is globally asymptotically stable under the condition

 $\frac{\max k_n}{\min k_n} \exp(\max r_n - 1) < 2.$ 

 Z. Zhou and X. Zou, Stable periodic solutions in a discrete periodic logistic equation, Appl.Math. Letters, 16(2003), 165-171.





On the other hand, if the environment is relatively steady, but the individuals of some species grow periodically with period  $\omega$  then  $\{r_n\}_{n=0}^{\infty}$  is a positive  $\omega$ -periodic sequence with  $r_{n+\omega} = r_n$ , and model (1.3) becomes

 $x_{n+1} = x_n \exp[r_n(1 - x_n)], \quad n = 0, 1, 2....$ (1.5)

the equation (1.5) always has two constant equilibria 0 and 1. The origin 0 is always unstable.

Q.Q.Zhang et al proved that if

$$r_n \le 2, \quad n = 0, 1, 2, \dots,$$
 (1.6)

every positive solution of (1.5) goes to 1 as  $n \to \infty$ .

• Q. Q. Zhang and Z. Zhou, Global attractivity of a nonautonomous discrete logistic model, Hokkaido Math. J., 29(2000), 37-44.





#### Some further questions:

- a) Then what happens if (1.6) does not hold?
- b) Does model (1.5) have non-constant periodic solutions?
- c) If (1.5) have non-constant periodic solutions, how many non-constant periodic

solutions does it have?









#### Existence of non-constant $\omega$ -periodic solutions

Let

$$f_n(x) = x e^{r_n(1-x)}, \quad n = 0, 1, 2, \dots$$

Then equation (1.5) becomes

$$x_{n+1} = f_n(x_n), \quad n = 0, 1, 2, \dots,$$

which yields

$$x_{n+1} = f_n(f_{n-1}(\dots f_0(x_0))), \quad n = 0, 1, 2, \dots$$

Set

$$f(x) = f_{\omega-1}(f_{\omega-2}(\dots f_0(x))), \quad x \ge 0.$$





#### We have

$$f'(x) = \frac{f(x)}{x} [1 - r_{\omega-1} f_{\omega-2} (\dots f_0(x))] [1 - r_{\omega-2} f_{\omega-3} (\dots f_0(x))] \dots (1 - r_1 f_0(x)) (1 - r_0 x).$$
  
It is not difficult to obtained

$$f'(0) = e^{r_0 + r_1 + \dots + r_{\omega-1}} > 1$$

Hence, the origin 0 is always unstable.

Since  $f_n(1) = 1$ ,  $n = 0, 1, 2, ..., \omega - 1$  we have

$$f'(1) = (1 - r_0)(1 - r_1) \dots (1 - r_{\omega - 1}).$$





y = f(x)

x

(1) Since f(x) is a continuously differentiable function for  $x \in [0,\infty)$  we find that f'(0) > 1, f'(1) > 1, and hence there exists V v = xa small positive number  $\delta < \frac{1}{4}$ , such that f(x) > x, for  $x \in (0, \delta]$  and f(x) < x for  $x \in [1 - \delta, 1)$ 1 which implies there exists an  $x^* \in (\delta, 1-\delta)$  such that  $f(x^*) = x^*$ 0 In fact, it is easy to see that  $f_0(x) \in [0, \frac{1}{r_0}e^{r_0-1}]$ , and so Figure 2.1  $f_1(f_0(x))$  is bounded for  $x \in (1,\infty)$ . By induction, we can prove that f(x) is bounded for  $x \in (1,\infty)$ .





#### (2) Set $F(x) = f_{2\omega-1}(f_{2\omega-2}(\dots f_{\omega}(f(x)))) = f^2(x)$

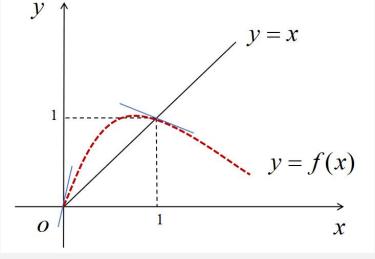
It suffices to show that F(x) has at least two positive fixed points except 1.

Similar calculation, we have

$$F'(0) = e^{2(r_0 + r_1 + \dots + r_{\omega-1})}$$

and

$$F'(1) = (1 - r_0)^2 (1 - r_1)^2 \dots (1 - r_{\omega - 1})^2.$$









**Theorem 2.1.**Assume that

$$\prod_{i=0}^{\omega-1} \left| 1 - r_i \right| > 1$$

Then the following two statements are true.

(1).Equation (1.5) has at least two non-constant  $\omega$ -periodic solutions if  $\prod_{i=0}^{\omega-1}(1-r_i) > 1$ .

(2).Equation (1.5) has at least two non-constant 2 $\omega$ -periodic solutions if  $\prod_{i=0}^{\omega-1} (1-r_i) < -1$ .





**Corollary 2.1.**Assume  $r_i \ge 2, i = 0, 1, ..., \omega - 1$  and  $r_0 + r_1 + \cdots + r_{\omega-1} > 2\omega$ . Then the following two statements are true.

(1). (1.5) has at least two non-constant  $\omega$ -periodic solutions if  $\omega$  is a positive even number.

(2). (1.5) has at least two non-constant 2 $\omega$ -periodic solutions if  $\omega$  is a positive odd number





#### **2-periodic solutions**

Clearly, the existence problem of a 2-periodic solution of (1.5) is equivalent to the existence problem of a positive fixed point except 1 of the function

 $f(x) = f_1(f_0(x)).$ 

Let  $y = f_0(x)$ . To seek one non-constant 2-periodic solution of equation (1.5), we just need to find one positive solution except (1, 1) of the following planar system

$$\begin{cases} y = f_0(x) \\ x = f_1(y) \end{cases}$$





Which can be reduced to

$$\begin{cases} y = xe^{r_0(1-x)} \\ r_0x + r_1y = r_0 + r_1. \end{cases}$$

It follows that

$$H(x) = -r_0 x + r_0 + r_1 - r_1 x e^{r_0(1-x)} = 0.$$

Taking the derivative of H(x), we obtain

$$H'(x) = -r_0 + r_1(r_0x - 1)e^{r_0(1-x)}$$





Define

$$G(r_0, r_1) = H'\left(\frac{2}{r_0}\right) = -r_0 + r_1 e^{r_0 - 2}.$$

Then the parameter domain  $M = \{(r_0, r_1) : r_0 > 0, r_1 > 0\}$  is divided into the following two sub-domains:

 $M^+ = \{(r_0, r_1) \in M : G(r_0, r_1) > 0\}$  and  $M^- = \{(r_0, r_1) \in M : G(r_0, r_1) \le 0\}.$ 

It is easy to see that if  $(r_0, r_1) \in M^-$ , then H(x) is strictly decreasing for  $x \in [0, \infty)$ which together with  $H(0) = r_0 + r_1 > 0$ , H(1) = 0 and  $H(+\infty) = -\infty$  implies that 1 is a unique root of H(x) = 0 and so (1.5) has **no non-constant 2-periodic solutions.** 





Similarly, define

$$Q(r_0, r_1) = -r_1 + r_0 e^{r_1 - 2}.$$

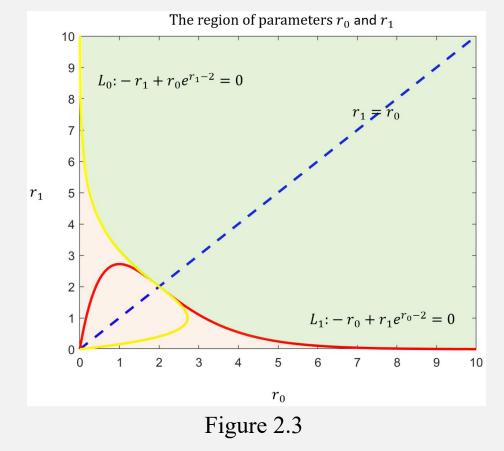
Then the domain M can be divided into

 $N^+ = \{(r_0, r_1) \in M : Q(r_0, r_1) > 0\}$  and  $N^- = \{(r_0, r_1) \in M : Q(r_0, r_1) \le 0\}.$ 

We can easily show that if  $(r_0, r_1) \in N^-$ , then (1.5) has no non-constant 2periodic solutions by switching the order of  $r_0$  and  $r_1$ .







The curve  $L_1$  (in red):  $-r_0 + r_1 e^{r_0 - 2} = 0$ The curve  $L_2$ (in yellow):  $-r_1 + r_0 e^{r_1 - 2} = 0$ The domain M into two sub-domains M<sup>+</sup>and M<sup>-</sup>, and N<sup>+</sup> and N<sup>-</sup>, respectively.

**Theorem 2.2.** Assume that  $(r_0, r_1) \in M^- \cup N$ . Then (1.5) has no non-constant 2-periodic solutions.





For the case when  $(r_0, r_1) \in M^+$ .

It is easy to see that H'(x) = 0 has exactly two positive roots denoted by  $h_i, i = 1, 2$ which satisfy  $0 < h_1 < \frac{2}{r_0} < h_2$ . Set

$$H_i = H(h_i) = -r_0 h_i + r_0 + r_1 - r_1 h_i e^{r_0(1-h_i)}, \quad i = 1, 2.$$

It is clear that  $H_2 > H_1$ . Therefore, there are only three possible cases to consider.

Case 1.  $H_1 > 0$  or  $H_2 < 0$ .

Case 2.  $H_1 = 0$  or  $H_2 = 0$ .

Case 3.  $H_1 < 0$  and  $H_2 > 0$ .





For the case when  $(r_0, r_1) \in N^+$ .

It is easy to see that F'(y) = 0 has exactly two positive roots denoted by  $f_i$ , i = 1, 2which satisfy  $0 < f_1 < \frac{2}{r_0} < f_2$ . Set  $F_i = F(f_i) = -r_1 f_i + r_1 + r_0 - r_0 f_i e^{r_1(1-f_i)}, \quad i = 1, 2.$ 

It is clear that  $F_2 > F_1$ . Therefore, there are only three possible cases to consider.

Case 4. $F_1 > 0$  or  $F_2 < 0$ .

Case 5.  $F_1 = 0$  or  $F_2 = 0$ .

Case 6.  $F_1 < 0$  and  $F_2 > 0$ .





**Theorem 2.3** Assume that  $(r_0, r_1) \in M^+ \cup N^+$ . Then the following three statements are true.

(1) If Case 1or Case 4 is true, then (1.5) has no non-constant 2-periodic solutions.
(2) If Case 2 or Case 5 is true, then (1.5) has a unique non-constant 2-periodic solution. And further more, r<sub>0</sub>r<sub>1</sub> = r<sub>0</sub>+r<sub>1</sub> means that the equilibrium 1 is semi-stable, and r<sub>0</sub>r<sub>1</sub> ≠ r<sub>0</sub>+r<sub>1</sub> implies that the 2-periodic solution is semi-stable.

(3) If Case 3 or Case 6 is true, then (1.5) has exact two non-constant 2-periodic solutions.



# **Numerical simulations**





**Example 3.1.** We set  $\omega = 5$ . For the periodic sequence  $\{r_i\}$  given by

$$r_0 = 0.5, r_1 = 1.5, r_2 = 5.01, r_3 = 2.29, r_4 = 2.21,$$
 (3.1)

we have

$$\prod_{i=0}^{4} (1 - r_i) = 1.5648 > 1.$$

According to Theorem 2.1, equation (1.5) has at least two 5-periodic solutions. For  $\{r_i\}$  given by

$$r_0 = 2.12, r_1 = 2.43, r_2 = 2.72, r_3 = 2.39, r_4 = 2.21,$$
 (3.2)

we have

$$\prod_{i=0}^{4} (1 - r_i) = -4.6332 < -1.$$

It follows from Theorem 2.1 that equation (1.5) has at least two 10-periodic solutions.



## **Numerical simulations**

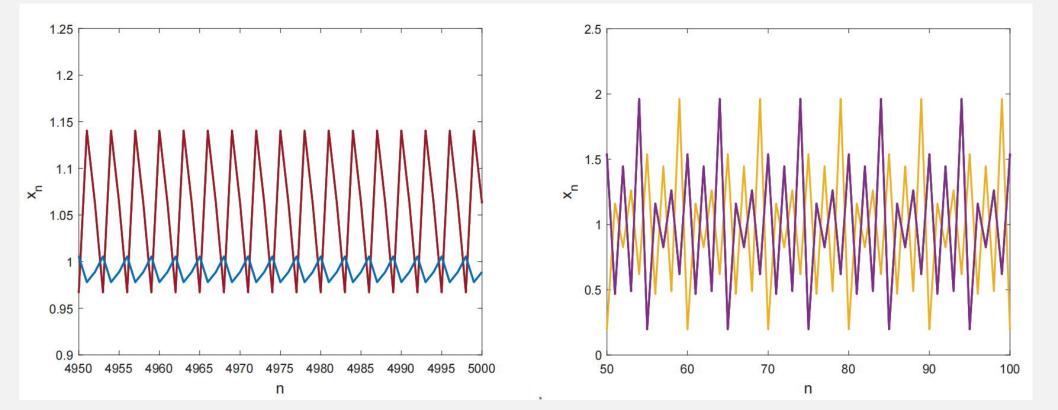


Figure 3.1: With  $\omega = 5$ , equation (1.5) is a 5-periodic equation. When the periodic sequence  $\{r_i\}$  is given in (3.1), there exist two locally asymptotically stable 5-periodic solutions as shown in the left figure. When sequence  $\{r_i\}$  is given in (3.2), it shows that there exist two locally asymptotically stable 10-periodic solutions in the right figure. The unique positive fixed point is unstable.



Example 3.2. Let

$$r_0 = r_1 = \dots = r_{\omega-2} = 2, r_{\omega-1} = 2 + \epsilon, r_{n+\omega} = r_n,$$

for n = 0, 1, ..., where  $\epsilon$  is an arbitrary positive constant and  $\omega$  is a positive integer. Then by Corollary 2.1, equation (1.5) has at least two  $\omega$ -periodic non-constant periodic solutions if  $\omega$  is even, and at least two 2 $\omega$ -periodic non-constant periodic solutions if  $\omega$  is odd.

Numerically, we consider two different cases. When  $\omega = 4$  and

$$r_0 = 2, \quad r_1 = 2, \quad r_2 = 2, \quad r_3 = 2.5,$$
 (3.3)

equation (1.5) has two 4-periodic equations.

When  $\omega = 5$  and

$$r_0 = 2, \quad r_1 = 2, \quad r_2 = 2, \quad r_3 = 2, \quad r_4 = 2.5,$$
 (3.4)

equation (1.5) has two 10-periodic equations.



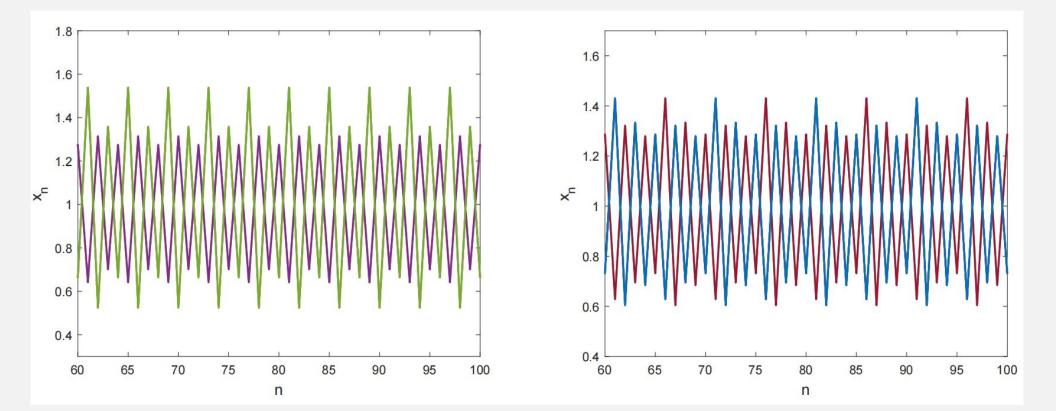


Figure 3.2: With  $\omega = 4$  and the periodic sequence  $\{r_i\}$  is given in (3.3), equation (1.5) is a 4-periodic equation. The numerical result shows that there exist two a locally asymptotically stable 4-periodic solutions as in the left figure. With  $\omega = 5$  and sequence  $\{r_i\}$  is given in (3.4), equation(1.5) is a 5-periodic equation. The numerical result shows that there exist two a locally asymptotically stable 10-periodic solutions as in the right figure. The unique positive fixed point is unstable.





#### Example 3.3. Let

$$\omega = 2, r_0 = 1, r_1 = r > 0, r_{n+2} = r_n, \text{ for } n = 0, 1, \dots$$

then

$$H(x) = -x + 1 + r(1 - xe^{1-x})$$
 and  $H'(x) = -1 + r(x - 1)e^{1-x}$ .

Since  $f'(1) = (1-r_0)(1-r_1) = 0$ , 1 is locally stable. When  $r \le e$ , we have  $G(r_0, r_1) = -r_0 + r_1 e^{r_0 - 2} = -1 + re^{-1} \le 0$ . By Theorem 2.3, equation (1.5) has no non-constant 2-periodic solutions when  $r \le e$ .

Now we assume r > e. Then  $G(r_0, r_1) = -r_0 + r_1e^{r_0-2} = -1 + re^{-1} > 0$ . Let  $h_1(r)$  and  $h_2(r)$  be two positive roots of H'(x) = 0 with  $h_1(r) < h_2(r)$ . Since  $H''(x) = r(2 - x)e^{1-x}$ , it is easy to see that  $1 < h_1(r) < 2 < h_2(r)$ , for r > e, and  $h_1(e) = h_2(e) = 2$ . By a direct calculation, we have

$$\frac{dh_i(r)}{dr} = \frac{1 - h_i(r)}{r(2 - h_i(r))}, i = 1, 2,$$



## **Numerical simulations**



Which implies that  $h_1(r) \in (1,2)$  is strictly decreasing for  $r \in (e,\infty)$  and  $\lim_{r\to\infty} h_1(r) = 1$ and that  $h_2(r) \in (2,\infty)$  is strictly increasing for  $r \in (e,\infty)$  and  $\lim_{r\to\infty} h_2(r) = \infty$ . By using the fact that  $r = \frac{e^{h_i(r)-1}}{h_i(r)-1}$ , for i = 1, 2, we have

$$H_i(r) = H(h_i(r)) = -h_i(r) + 1 + r(1 - h_i(r)e^{1 - h_i(r)}) = -h_i(r) + 1 + \frac{e^{h_i(r) - 1} - h_i(r)}{h_i(r) - 1}, \text{ for } i = 1, 2.$$

It is easy to have  $H_i(e) = e - 3 < 0, i = 1, 2$ , and  $\lim_{r\to\infty} H_1(r) = 0$  and  $\lim_{r\to\infty} H_2(r) = \infty$ . Therefore, there must be some  $r^* > e$  such that  $H_2(r^*) = 0$ . Thus, we know that

 $H_1(r) \in (e-3,0), \text{ for } r > e,$ 

and

$$H_2(r) \in (e-3,0), \text{ for } r \in (e,r^*) \text{ and } H_2(r) \in (0,\infty) \text{ for } r > r^*.$$

By Theorem 2.3 again, we see that  $r \in (e, r^*)$  implies that equation (1.5) has no nonconstant 2-periodic solutions,  $r = r^*$  means that equation (1.5) has a unique non-constant 2-periodic solution, and  $r > r^*$  indicates that equation (1.5) has exactly two non-constant 2-periodic solutions.





#### Example 3.4. Let

$$\omega = 2, r_0 = 3, r_1 = \frac{3}{2}, r_{n+2} = r_n, \text{ for } n = 0, 1, \dots$$

then

$$H(x) = -3x + \frac{9}{2} - \frac{3}{2}xe^{3(1-x)}$$
 and  $H'(x) = -3 + \frac{3}{2}(3x-1)e^{3(1-x)}$ .

Since  $r_0r_1 = r_0 + r_1 = \frac{9}{2}$ , we see that the positive equilibrium 1 is semi-stable, and equation (1.5) has a unique non constant 2-periodic solution.





**Example 3.5.** We let the periodic sequence  $r_i$  given by

$$r_0 = 2.12, r_1 = 2.43, r_2 = 0.72, r_3 = 2.39, r_4 = 2.21,$$
 (3.5)

such that the following product is positive but

$$\prod_{i=0}^{4} \left(1 - r_i\right) = 0.7542 < 1.$$

Nevertheless, the unique positive fixed point  $x^* = 1$  is locally asymptotically stable

and, numerically, we have one 5-periodic solutions which is also locally asymptotically stable. Solutions approach either of them with different initial values.



### **Numerical simulations**

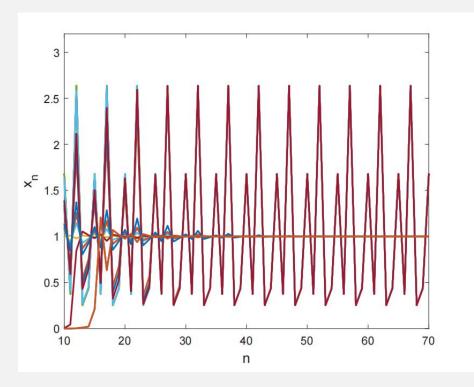


Figure 3.3: With the periodic sequence  $r_i$  given in (3.5), the unique positive fixed point  $x^* = 1$  is locally asymptotically stable and there is a 5-periodic solution which is also locally asymptotically stable . Solutions approach the fixed point or this 5-periodic solution depending on their initial values.



# **Further questions**







# **Question 1:** Does equation (1.5) have more than two non-constant $\omega$ -periodic solutions if $\prod_{i=0}^{\omega-1}(1-r_i) > 1$ .

**Question 2:** Does equation (1.5) are more than two non-constant  $2\omega$ -periodic solutions if  $\prod_{i=0}^{\omega-1} (1-r_i) < -1$ .

# **Thanks for your attention!**