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Consider the classic discrete-time Ricker model

u o =u exp{r(l _ ”k ﬂ u >0;n=01,2,..., 1.1
where u 1s the population size in generation #, r 1s the intrinsic growth rate, and £ 1s
the carrying capacity of the environment.
The discrete-time Ricker model exhibits complex and rich dynamics even with
constant » and k. Its typical dynamical feature is the periodic-doubling bifurcation to

chaotic behavior.
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Table 1: Dynamics of a population described by the difference equation (1.1)

Dynamical behavior Value of growth rate, r Illustration
Globally stable equilibrium point 2>r>0 Fig. 1(a)
Stable two-point cycle 2526>r>2 Fig. 1(b)
Stable four-point cycle 2.656 > r> 2.526 Fig. 1(c)
Stable cycle, period 8, giving way in turn 2.692 > r> 2.656
to cycles of period 16, 32, etc. as r
increases
Chaos (cycles of arbitrary period, or r>2.692 Fig. 1(d), (e), (f)

aperiodic behavior, depending on initial
condition)
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FiG. 1. Spectrum of dynamical behavior of the population density, N /K, as a function of
time, 7, as described by the difference equation (1) for various values of r. Specifically:
(@) r = 1-8, stable equilibrium point; (b) r = 2-3, stable two-point cycle; () r = 26,
stable four-point cycle; (d), (e), (f) are in the chaotic regime, where the detailed character
of the solution depends on the initial population value, with (d) ¥ = 3-3 (IV,/K = 0-075)
(€) r = 33 (No/K = 1-5), (f) r = 5-0 (No/K = 0-02).

® R. M. May, Biological populations obeying difference equations: stable points, stable cycles and chaos,
J. Theo. Biol., 51 (1975), 511-524.
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The corresponding continuous model is

d”c‘l(;)_u()H ”(t)ﬂ £>0 (1.2)

whose dynamic behavior 1s very simple, that is to say, every positive solution
of (1.2) tends to k as t—0 .
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In some circumstances, the intrinsic growth rate and/or the carrying capacity may
vary 1n time, particularly periodically. For model (1.1), 1f both the intrinsic growth rate

and the carrying capacity change periodically and simultaneously with period @ such

that the model equation 1s

n

U =u exp rn(l—’;"j . n=0,12..., (1.3)

where r =7 and k. =k have common period o .

® S. Mohamad and K. Gopalsamy, Extreme stability and almost periodicity in a discrete logistic
equation, Tohoku Math. J. 52, 107-125 (2000).

® 7. Zhou and X. Zou, Stable periodic solutions in a discrete periodic logistic equation, Appl.Math.
Letters, 16(2003), 165-171.
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The differential equation counterpart of (1.3) give by

du(t)
dt

=u(?) r(t)( —Zigj , >0, (1.4)

r(t) and K(t) can be assumed to be nonconstant periodic functions with a common
period o to reflect the seasonal fluctuations. It has been shown that (1.4) has a positive
o-periodic solution x(r) which attracts every positive solution x(z)of (1.4) as t—oo.

® B.D. Coleman, Nonautonomous logistic equations as models of the adjustment of populations to
environ_x0002_mental changes, Math. Biosei. 45, 159-173 (1979).

® B.D. Coleman, Y.H. Hsieh and G.P. Knowles, On the optimal choice of r for a population in a periodic environment,
Math. Biosci. 46, 71-85 (1979).

® K. Gopalsamy and X.Z. He, Dynamics of an almost periodic logistic integrodifferential equation, Methods Appl. Anal.
2, 38-66 (1995).
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S. Mohamad et al considered equation (1.3), and obtained the following two main
theorems.

Theorem A: Assume that {r(n)} and {K(n)} satisty
0<r.<r(n)<r ,0<K,<K(n<K, neN
where 7+, r*, K+, and K™ are positive constants .Then (1.3) is extremely stable in the
sense that

lim|x(n) — y(n)| =0,
for any two solutions {x(n)} and {y(n)} of (1.3).

Theorem B: Assume that {r(n)} and {K(n)} are almost periodic sequences
satisfying o<z <r(n)<r',0<K.<K(m)<k’, neN With r*<2. Then (1.3) has a unique
positive and globally asymptoticly stable almost periodic solution.

® S. Mohamad and K. Gopalsamy, Extreme stability and almost periodicity in a discrete logistic equation,
Tohoku Math. J. 52, 107-125 (2000).
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Z.7hou and X. Zou considered equation (1.3) with

r(Bn)=1, r(Bn+1)=15, r(Bn+2)=1,
K(3n)=1, KQ@Bn+1)=5  K(@n+2)=8,

for ne N . Then (1.3) has a 3-periodic solution X(#) , where
X(3n)=3.2184, X(3n+1)=0.3501, X(3n+2)=1.4126, for neN,
and a 6-periodic solution {x*(n)} where
x"(6n)=5.6940, x*(6n+1)=0.0521, x*(6n+2)=0.2299,
x"(6n+3)=0.6072, x*(6n+4)=0.8993, x*(6n+5)=3.0774, for neN,

® 7. Zhou and X. Zou, Stable periodic solutions in a discrete periodic logistic equation,
Appl.Math. Letters, 16(2003), 165-171.
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Z.7hou and X. Zou proved that (1.3) has an m-periodic solution which 1s globally

asymptotically stable under the condition

max k,,

=l 2.
. exp(maxr, — 1) <

® Z.Zhou and X. Zou, Stable periodic solutions in a discrete periodic logistic equation, Appl.Math.
Letters, 16(2003), 165-171.
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On the other hand, if the environment is relatively steady, but the individuals of
some species grow periodically with period o then {}”, 1s a positive o-periodic
sequence with 7., =7, , and model (1.3) becomes

Tp+l = Tpexp[rp(l —x,)], n=0,1,2.... (1.5)
the equation (1.5) always has two constant equilibria 0 and 1. The origin 0 is always

unstable.
Q.Q.Zhang et al proved that if
rn <2 mn=012,... (1.6)
every positive solution of (1.5) goesto 1 as n— .

® Q. Q. Zhang and Z. Zhou, Global attractivity of a nonautonomous discrete logistic model, Hokkaido
Math. J., 29(2000), 37-44.
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Some further questions:

a) Then what happens if (1.6) does not hold?
b) Does model (1.5) have non-constant periodic solutions?
c) If (1.5) have non-constant periodic solutions, how many non-constant periodic

solutions does it have?
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Main results

Existence of non-constant m-periodic solutions

Let
Tl = re17%)  p=01,2,....

Then equation (1.5) becomes
Ln+1 :fn(mn): ?’?/:0,1,2,...,
which yields

Int1 = fn(fn—l(f()(x())))a n=2012....
Set

f(@) = fo1(foa( - folz))), =0
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We have

F@) =220~y fuma(e - fa@IL = ro—afu—s(. - fol@))]
It 1s not difficult to obtained

ff(o) = 0T+ Tw-1 ~ ]

Hence, the origin 0 1s always unstable.

Since f.(1)=1, n=0,1,2,...,w—1 we have

) =0 —=ro)Q—=r1)...(1 = ry_1).

oo (L =71 fo(x))(1 — rox).
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(1) Since f(x) 1s a continuously differentiable function for

€[0,00) we find that f(0)>1. f'(1)>1, and hence there exists

a small positive number 5<% , such that e y -
f(x) >z, for x € (0,0] and f(z) <z for z €[l —0,1) L ~~~~ Y= ()
which implies there exists an x €(5,1-6) such that f (x*)= X
) . X
In fact, it is easy to see that fo(z) € [0, -¢"°""] and so
Figure 2.1

fi(fo(*)) 1s bounded forx € (1,») . By induction, we can prove

that f(x) is bounded forx € (1,«) .
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(2) Set
F(2) = faw—1(fow—2(... fu(f(2)))) = f*(2)

It suffices to show that F(x) has at least two positive
fixed points except 1.
Similar calculation , we have

F,(O) — 2(rotrit-+ry-1)

and

F'(1)=(1—-710)*(1—71)*...(1 —ry_1)%

e

s"\
~

Figure 2.2
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Theorem 2.1.Assume that
o—1
[ 1=
=0

Then the following two statements are true.

> |

(1).Equation (1.5) has at least two non-constant w-periodic solutions 1f

““Z_Ol(l—rl.)>1 ,

(2).Equation (1.5) has at least two non-constant 2m-periodic solutions

if T, (-r)<-1.
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Corollary 2.1.Assume »>2,i=0.....,0-1and 7, +75+-+r,, >20. Then
the following two statements are true.

(1). (1.5) has at least two non-constant m-periodic solutions 1f ® is a
positive even number.

(2). (1.5) has at least two non-constant 2m-periodic solutions 1f ® 1s a
positive odd number
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2-periodic solutions

Clearly, the existence problem of a 2-periodic solution of (1.5) 1s equivalent to the

existence problem of a positive fixed point except 1 of the function

f(x) = fi(fo()).

Lety = fo(z). To seek one non-constant 2-periodic solution of equation (1.5), we just

need to find one positive solution except (1, 1) of the following planar system

y = fo(x)
r = fi1(y)
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Which can be reduced to

y = xefrg(l—aj)
rox + 11y =719+ 1.

It follows that

H(z) = —roz + 10 + 71 — rize™72) =0,

Taking the derivative of H(x), we obtain

H'(z) = —rg + r1(rox — 1)€T0(1_$)
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Define

Y
G(ro,m1) = H' () = =T —I—T16T0_2,

ro
Then the parameter domain A7 = {(r,r1) : 7o > 0,71 > 0} 18 divided into the
following two sub-domains:
MY = {(ro,71) € M : G(ro,m1) >0} and M~ = {(rg,71) € M : G(rp,71) < 0}.
It 1s easy to see that 1f (ro,71) € M~ , then H(x) 1s strictly decreasing for x €[0,0)
which together with #(0) =7+ >0, H(1) =0 and H(+o0) = —oco 1mplies that 1 1s a

unique root of H(x) =0 and so (1.5) has no non-constant 2-periodic solutions.
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Similarly, define
Q(ro,m1) = —r1 + 10" 2.
Then the domain M can be divided into
Nt ={(ro,m1) € M : Q(ro,r1) >0} and N~ = {(rg,71) € M : Q(ro,71) < 0}.

We can easily show that if (ro,m) € N~ , then (1.5) has no non-constant 2-

periodic solutions by switching the order of , and 7,.
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The region of parameters r, and ry
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Theorem 2.2.Assume that (., )e M~ UN. Then (1.5) has no non-constant 2-
periodic solutions.
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For the case when (rg,7) € M.
It is easy to see that H'(z) = 0 has exactly two positive roots denoted by #,,i=1,2
which satisfy 0<#, < 2 h,.

Set
Hi = H(hﬁ) = —Tohi +7rog+711 — Tlh@'@m(l_hi), ) = 1,2.

It 1s clear that A, > H,. Therefore, there are only three possible cases to consider.

Casel.H,>0or H,<0.

Case 2. H, =0 or H, =0.

Case3.H,<0and H,> 0.
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For the case when (r0,71) € N7,
It 1s easy to see that F'(y)=0has exactly two positive roots denoted by f;,i =1,2
which satisfy 0< f, < 2 £,. Set
¢

0

F=F(f)=—rifi+r+ro—rofientF) =12

It 1s clear that F, > F,. Therefore, there are only three possible cases to consider.

Cased4.F;,>0or F,<0.

Case 5. F; =0 or F, =0.

Case 6. F; <0 and F,> 0.
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Theorem 2.3 Assume that (;.5)e " UN". Then the following three statements
are true.

(1) If Case lor Case 4 1s true, then (1.5) has no non-constant 2-periodic solutions.

(2) If Case 2 or Case 5 1s true, then (1.5) has a unique non-constant 2-periodic
solution. And further more, ror1 = ro+7r1 means that the equilibrium 1 1s semi-stable,
and ror1 # ro+r1 1mplies that the 2-periodic solution 1s semi-stable.

(3) If Case 3 or Case 6 1s true, then (1.5) has exact two non-constant 2-periodic

solutions.
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Numerical simulations A

Example 3.1. We set ® = 5. For the periodic sequence {r,;} given by

o — 05. 1 = 15, Tro — 501, rs — 229, T4 = 221, (31)
we have 4
[]@—r)=15648 > 1.
1=0

According to Theorem 2.1, equation (1.5) has at least two 5-periodic solutions.
For {r,} given by

ro=212, r;1 =243 ro=272 r3=239 r4=221, (3.2)
we have A
J]@—r)=-46332<—1.
1=0

It follows from Theorem 2.1 that equation (1.5) has at least two 10-periodic solutions.
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Figure 3.1: With w = 5, equation (1.5) 1s a 5-periodic equation. When the periodic sequence {7;} is
given in (3.1), there exist two locally asymptotically stable 5-periodic solutions as shown in the left
figure. When sequence {r,! is given in (3.2), it shows that there exist two locally asymptotically stable
10-periodic solutions in the right figure. The unique positive fixed point is unstable.
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Example 3.2. Let
ro=mTry=""=Ty—2 = Q:Tw—l — 2+E:T?’L-I—w = T'n,

forn=20, 1, ..., where € 1s an arbitrary positive constant and ® is a positive integer.
Then by Corollary 2.1, equation (1.5) has at least two ®-periodic non-constant periodic
solutions if ® 1s even, and at least two 2m-periodic non-constant periodic solutions if ®

1s odd.
Numerically, we consider two different cases. When = 4 and

ro=2, rn=2, ro=2, r3=2.5, (3.3)
equation (1.5) has two 4-periodic equations.
When o = 5 and
ro=2, "1=2, To=2, r3=2, 14=2.5, (3.4)

equation (1.5) has two 10-periodic equations.
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Figure 3.2: With o = 4 and the periodic sequence {r;} 1s given in (3.3), equation (1.5) 1s a 4-periodic
equation.The numerical result shows that there exist two a locally asymptotically stable 4-periodic
solutions as in the left figure. With = 5 and sequence {r;} is given in (3.4), equation(1.5) 1s a 5-
periodic equation. The numerical result shows that there exist two a locally asymptotically stable 10-

periodic solutions as in the right figure.The unique positive fixed point is unstable.
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Example 3.3. Let

w=2r9g=1r1=r>0,rp40=1,, for n=0,1,....

then
H(z) = -z +1+7(1-2ze!®) and H'(z) = -1+ 7r(z — 1)e!™2

Since /() =(1-r)(1-r)=0,1 1s locally stable.
When r < e, we have G(ry,r) = —rg+re2 = —1+re-! < 0. By Theorem 2.3, equation

(1.5) has no non-constant 2-periodic solutions when r <e..

Now we assume r > e. Then G(rg,r1) = —rg + r1e™ 2 = —1 + re=! > 0. Leth,(r) and ha(r)

be two positive roots of H'(z) = 0 with hy(r) < ho(r). Since H(z) = r(2 — z)e! = ,it 1S easy
to see that1 < ny(r) < 2 < ho(r), fOr r > ¢, and hi(e) = ho(e) = 2. By a direct calculation, we
have

dhﬁ(’f‘) . 1— h?;(?“)

=  =1,2
dr r@—hi(r) 7
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Which implies thats.(r) € (1,2) 1s strictly decreasing for » € (e, oc) andlim, o hi(r) = 1
and that a(r) € (2,00)1s strictly increasing for r € (e, o0)and lim, s ha(r) = oo . By using
the fact that » = % , for ; = 1,2, we have
hi(r)=1 _ b (r)

hi(r) — 1

H;(r) = H(h;i(r)) = —hi(r)—l—l—l—’r(l—hi(r)el_hi(r)) = —hi(r)—l—l—ke , for i =1,2.

It 1s easy to have Hi(e) = e -3 < 0,i = 1,2, and lim, o H;(r) = 0 and lim,_,o, Hy(r) = co..
Therefore, there must be some »* > e such that H#,(r*) = 0 Thus, we know that
Hi(r) € (e—3,0), for r>e,
and
Hy(r) € (e—3,0), for r € (e,r*) and Haz(r) € (0,00) for r > r".

By Theorem 2.3 again, we see that » € (¢,*) implies that equation (1.5) has no non-
constant 2-periodic solutions, » = »* means that equation (1.5) has a unique non-constant
2-periodicsolution, and » > r* indicates that equation (1.5) has exactly two non-constant
2-periodic solutions.
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Example 3.4. Let
3

w=2,rg=3,r = 52 Tn+2 = Tn, for n=0,1,....
then
H(z) = -3z+ 2 — 32e31=%) and H'(z) = -3+ 3 (32— 1)e3(172)
Since ror1 = ro+m1 = 3, we see that the positive equilibrium 1 is semi-stable, and

equation (1.5) has a unique non constant 2-periodic solution.
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Example 3.5. We let the periodic sequence r; given by
Tg — 212, KL — 2437 ro = 072, ry = 239, T4 — 221, (35)
such that the following product 1s positive but
4

[Ja-r)=07542 < 1.
1=0
Nevertheless, the unique positive fixed point x* = 1 is locally asymptotically stable
and, numerically, we have one 5-periodic solutions which 1s also locally asymptotically

stable. Solutions approach either of them with different initial values.
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Figure3.3: With the periodic sequence r; given in (3.5), the unique positive fixed point x* =1 1s locally
asymptotically stable and there is a 5-periodic solution which is also locally asymptotically stable .
Solutions approach the fixed point or this 5-periodic solution depending on their initial values.
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Further questions <

Question 1: Does equation (1.5) have more than two non-constant

w-periodic solutions if HZ},I(I—@)> 1,

Question 2: Does equation (1.5) ave more than two non-constant 2®-
periodic solutions if [, (1-7)<-L



Thanks for your attention!



