
Non-constant periodic solutions of the Ricker 
model  with periodic parameters

FangfangLiao，Na Sun，Yu Gu 

Xiangnan University

28th May 2025

This is joint work with professors Xiaoping Wang, Fulai Chen



Backgrounds

Main results

Numerical simulations

Outlines

1

2

3

Further questions4



01

Backgrounds



Backgrounds

Consider the classic discrete-time Ricker model

where     is the population size in generation n, r is the intrinsic growth rate, and k is 

the carrying capacity of the environment.

The discrete-time Ricker model exhibits complex and rich dynamics even with 

constant r and k. Its typical dynamical feature is the periodic-doubling bifurcation to 

chaotic behavior.
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l R. M. May, Biological populations obeying difference equations: stable points, stable cycles and chaos, 
J. Theo. Biol., 51 (1975), 511-524.

Table 1: Dynamics of a population described by the difference equation (1.1)
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The corresponding continuous model is 

whose dynamic behavior  is very simple, that is to say,  every positive solution 
of (1.2) tends to k as t→∞ .
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Figure 1.1
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In some circumstances, the intrinsic growth rate and/or the carrying capacity may 

vary in time, particularly periodically. For model (1.1), if both the intrinsic growth rate 

and the carrying capacity change periodically and simultaneously with period     such 

that the model equation is

where               and                have common period     .nn rr  nn kk  


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l S. Mohamad and K. Gopalsamy, Extreme stability and almost periodicity in a discrete logistic 
equation, Tohoku Math. J. 52, 107-125 (2000). 

l Z. Zhou and X. Zou, Stable periodic solutions in a discrete periodic logistic equation, Appl.Math. 
Letters, 16(2003), 165-171.
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The differential equation counterpart of  (1.3) give by
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 r(t) and K(t) can be assumed to be nonconstant periodic functions with a common 
period ω to reflect the seasonal fluctuations. It has been shown that (1.4) has a positive  
ω-periodic solution       which attracts every positive solution      of (1.4) as t→∞.)(~ tx )(tx

l B.D. Coleman, Nonautonomous logistic equations as models of the adjustment of populations to 
environ_x0002_mental changes, Math. Biosei. 45, 159-173 (1979). 

l B.D. Coleman, Y.H. Hsieh and G.P. Knowles, On the optimal choice of r for a population in a periodic environment, 
Math. Biosci. 46, 71-85 (1979). 

l  K. Gopalsamy and X.Z. He, Dynamics of an almost periodic logistic integrodifferential equation, Methods Appl. Anal. 
2, 38-66 (1995). 
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S. Mohamad et al  considered equation (1.3), and obtained the following two main 
theorems.

Theorem A: Assume that {r(n)} and {K(n)} satisfy

where r*, r*, K*, and K* are positive constants .Then (1.3) is extremely stable in the 
sense that 

for any two solutions {x(n)} and {y(n)} of (1.3). 
Theorem B: Assume that {r(n)} and {K(n)} are almost periodic sequences 

satisfying                                                      with r* < 2. Then (1.3) has a unique 
positive and globally asymptoticly  stable almost periodic solution. 

l S. Mohamad and K. Gopalsamy, Extreme stability and almost periodicity in a discrete logistic equation, 
Tohoku Math. J. 52, 107-125 (2000). 
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 Z.Zhou and X. Zou considered equation  (1.3) with

l Z. Zhou and X. Zou, Stable periodic solutions in a discrete periodic logistic equation, 
Appl.Math. Letters, 16(2003), 165-171.

for         . Then (1.3) has a 3-periodic solution        , where

and a 6-periodic solution {x*(n)} where 
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 Z.Zhou and X. Zou proved  that (1.3) has an  ω-periodic solution which is globally 
asymptotically stable under the condition    

l Z. Zhou and X. Zou, Stable periodic solutions in a discrete periodic logistic equation, Appl.Math. 
Letters, 16(2003), 165-171.



Backgrounds

On the other hand, if the environment is relatively steady, but the individuals of 
some species grow periodically with period  ω then         is a positive ω-periodic 
sequence with             , and model (1.3) becomes

the equation (1.5) always has two constant equilibria 0 and 1. The origin 0 is always 
unstable. 

Q.Q.Zhang et al proved that if

every positive solution of  (1.5)  goes to 1 as            .
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l Q. Q. Zhang and Z. Zhou, Global attractivity of a nonautonomous discrete logistic model, Hokkaido 
Math. J., 29(2000), 37-44.

(1.5)

(1.6)
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a) Then what happens if (1.6) does not hold? 

b) Does model (1.5) have non-constant periodic solutions? 

c) If (1.5) have non-constant periodic solutions, how many non-constant periodic 

solutions does it have?

Some further questions:



02

Main results



 Main results

Existence of non-constant ω-periodic solutions 

 Let

Then equation (1.5) becomes

which yields

Set



 Main results

 We have

It is not difficult to obtained

Hence, the origin 0 is always unstable.

Since                                              we have



 Main results

(1) Since f(x) is a continuously differentiable function for  

              we find that                         , and hence there exists 

a small positive number       , such that 

   

which implies there exists an                   such that               .

In fact, it is easy to see that                           ,and so            

       is bounded for            . By induction, we can prove 

that f(x) is bounded for            .

),0[ x     1110  ff 、

4
1



)1,(*  x   ** xxf 

),1( x

),1( x

Figure 2.1



 Main results
(2) Set

It suffices to show that F(x) has at least two positive 
fixed points except 1.

Similar  calculation , we have

and

     Figure 2.2



 Main results

Theorem 2.1.Assume that

Then the following two statements are true.
(1).Equation (1.5) has at least two non-constant ω-periodic solutions if
             . 
(2).Equation (1.5) has at least two non-constant 2ω-periodic solutions 

if                    .
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 Main results

Corollary 2.1.Assume                          and                             . Then 
the following two statements are true.

(1). (1.5) has at least two non-constant ω-periodic solutions if ω is a 
positive even number.

(2). (1.5) has at least two non-constant 2ω-periodic solutions if ω is a 
positive odd number
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2-periodic solutions 

Clearly, the existence problem of a 2-periodic solution of (1.5) is equivalent to the 
existence problem of a positive fixed point except 1 of the function

Let             . To seek one non-constant 2-periodic solution of equation (1.5), we just 
need to find one positive solution except (1, 1) of the following planar system



 Main results
Which can be reduced to

It follows that

Taking the derivative of H(x), we obtain
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Define

Then the parameter domain                                          is divided into the 

following two sub-domains:

It is easy to see that if                   , then H(x) is strictly decreasing for      

which  together with                                      and                       implies that 1 is a 

unique root  of H(x) = 0 and so (1.5) has no non-constant 2-periodic solutions.
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 Main results

Similarly, define

Then the domain M can be divided into

We can easily show that if                    , then (1.5) has no non-constant 2-

periodic solutions by switching the order of r0 and r1.



 Main results

The curve L1 (in red): 

      The curve L2(in yellow):                        

      The domain M into two sub-domains 

M+and M−, and N + and N −, respectively. 

Figure 2.3
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Theorem 2.2.Assume that                    .  Then (1.5) has no non-constant 2-
periodic solutions. 
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 Main results
For the case when                    .

It is easy to see that                  has exactly two positive roots denoted by         

which satisfy                     .

Set

It is clear that             . Therefore, there are only three possible cases to consider. 
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Case 1. H1 > 0 or H2 < 0.

Case 2. H1 = 0 or H2 =0.

Case 3. H1 < 0 and H2 > 0.



 Main results
For the case when                   .

It is easy to see that               has exactly two positive roots denoted by         

which satisfy                     . Set

It is clear that F2 > F1.Therefore, there are only three possible cases to consider. 
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Case 4.F1 > 0 or F2 < 0.

Case 5. F1 = 0 or F2 =0.

Case 6. F1 < 0 and F2 > 0.
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 Main results

Theorem 2.3  Assume that                       . Then the following three statements 
are true.

(1) If Case 1or Case 4 is true, then (1.5) has no non-constant 2-periodic solutions.

(2) If Case 2 or Case 5 is true, then (1.5) has a unique non-constant 2-periodic 

solution. And further more,                    means that the equilibrium 1 is semi-stable, 

and                    implies that the 2-periodic solution is semi-stable.

(3) If Case 3 or Case 6 is true, then (1.5) has exact two non-constant 2-periodic 

solutions.
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Numerical simulations

Example 3.1.  We set ω = 5. For the periodic sequence {ri} given by

we have

According to Theorem 2.1, equation (1.5) has at least two 5-periodic solutions.
       For {ri} given by

we have

It follows from Theorem 2.1 that equation (1.5) has at least two 10-periodic solutions.

 (3.1)

 (3.2)



Numerical simulations

Figure 3.1: With ω = 5, equation (1.5) is a 5-periodic equation. When the periodic sequence {ri} is 
given in (3.1), there exist two locally asymptotically stable 5-periodic solutions as shown in the left 
figure. When sequence {ri} is given in (3.2), it shows that there exist two locally asymptotically stable 
10-periodic solutions in the right figure. The unique positive fixed point is unstable. 
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Example 3.2.  Let 

for n = 0, 1, . . . , where    is an arbitrary positive constant and ω is a positive integer. 
Then by Corollary 2.1, equation (1.5) has at least two ω-periodic non-constant periodic 
solutions if ω is even, and at least two 2ω-periodic non-constant periodic solutions if ω 
is odd.

Numerically, we consider two different cases. When ω = 4 and

equation (1.5) has two 4-periodic equations.
When ω = 5 and

equation (1.5) has two 10-periodic equations.

 (3.3)

 (3.4)



Numerical simulations

Figure 3.2: With ω = 4 and the periodic sequence {ri} is given in (3.3), equation (1.5) is a 4-periodic 
equation.The numerical result shows that there exist two a locally asymptotically stable 4-periodic 
solutions as in the left figure. With ω = 5 and sequence {ri} is given in (3.4), equation(1.5) is a 5-
periodic equation. The numerical result shows that there exist two a locally asymptotically stable 10-
periodic solutions as in the right figure.The unique positive fixed point is unstable.
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Example 3.3.  Let

then

Since                             ,1 is locally stable.
 When         , we have                                                         By Theorem 2.3, equation 

(1.5) has no non-constant 2-periodic solutions when          . 
Now we assume          . Then                                                             . Let        and         

be two positive roots of                 with                    . Since                               ,it is easy 
to see that                              , for          , and                           . By a direct calculation, we 
have
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 Which implies that                  is strictly decreasing for               and                          
and that                    is strictly increasing for                 and                            . By using 
the fact that                , for             we have

It is easy to have                                   , and                          and                            .
Therefore, there must be some           such that                Thus, we know that

and
                                                 
By Theorem 2.3 again, we see that              implies that equation (1.5) has no non-

constant 2-periodic solutions,           means that equation (1.5) has a unique non-constant 
2-periodicsolution, and           indicates that equation (1.5) has exactly two non-constant 
2-periodic solutions.
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Example 3.4.  Let

then

Since                          , we see that the positive equilibrium 1 is semi-stable, and 

equation (1.5) has a unique non constant 2-periodic solution.
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Example 3.5. We let the periodic sequence ri given by

such that the following product is positive but

 Nevertheless, the unique positive fixed point x∗ = 1 is locally asymptotically stable 

and, numerically, we have one 5-periodic solutions which is also locally asymptotically 

stable. Solutions approach either of them with different initial values.
 

 (3.5)



Numerical simulations

Figure3.3: With the periodic sequence ri given in (3.5), the unique positive fixed point x∗ = 1 is locally 
asymptotically stable and there is a 5-periodic solution which is also locally asymptotically stable . 
Solutions approach the fixed point or this 5-periodic solution depending on their initial values.
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Further questions

Question 1：Does equation (1.5) have more than  two non-constant 
ω-periodic solutions if                  .  
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Question 2：Does equation (1.5) ave more than two non-constant 2ω-
periodic solutions if                     .  
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Thanks for your attention!


