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Introduction: Piecewise smooth (PWS) Maps

� 'Nonsmooth' phenomena in engineering, physics, biology, economics and
other sciences (such as sharp switching, impacts, friction, sliding, etc.) !
piecewise smooth functions;

� Theory of nonsmooth dynamical systems? Continuous case: Zhusubaliyev,
Mosekilde 2003, di Bernardo et al. 2008, Simpson, Meiss 2008, etc.;
Discontinuous case: Avrutin et al. 2019 (and references therein).

PWS maps are characterized by

� Existence of a border (or switching manifold, or critical line) across which
the function changes its de�nition ! Border Collision Bifurcation (BCB)
(Nusse, Yorke 1992, 1995);

� Degenerate bifurcations: local bifurcations related to the eigenvalues on the
unit circle under some degeneracy conditions (Sushko, Gardini 2010);

� Robustness of chaotic attractors (Banerjee et al. 1998);

� )Peculiar bifurcation structures which are impossible in smooth systems.
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PWL Homogeneous Maps: Introduction

� The dynamics of 2D PWL homogeneous discontinuous maps, which can be quite
intricate, is little studied as yet.

� Such maps appear in some applications, in particular, in economics.

Novel stock market model, Gardini et al. 2024

� Speculators consist of chartists and fundamentalists, as in Lo and Farmer (1999), and
fundamentalists enter stock market when their risk-adjusted pro�t expectations are
positive, as in Grossman and Stiglitz (1980).
� The phase space is separated into three partitions by two vertical discontinuity lines.
One linear homogeneous map acts in the middle partition, while the other acts in the two
external partitions. The origin is a �xed point for both maps, but since it belongs to the
middle partition, it is a virtual �xed point for the external linear map.
� Global stability and bifurcation analysis reveals coexisting attractors with constant and
oscillating mispricing.
� Erratic switches between coexisting attractors in the presence of exogenous shocks.
Stochastic model version replicates stylized facts of stock markets.
� A new type of dynamic behavior, termed a weird quasiperiodic attractor, WQA.
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PWL Homogeneous Maps: Introduction

� Gardini L, Radi D, Schmitt N, Sushko I, Westerho� F. On the limits of informationally
e�cient stock markets: New insights from a chartist-fundamentalist model, 2024.
https://doi.org/10.48550/arXiv.2410.21198.

� L. Gardini, D. Radi, N. Schmitt, I. Sushko, F. Westerho�. On the emergence and
properties of weird quasiperiodic attractors, 2025a. https://arxiv.org/abs/2503.11264.
� L. Gardini, D. Radi, N. Schmitt, I. Sushko and F. Westerho�. Dynamics of 1D
discontinuous maps with multiple partitions and linear functions having the same �xed
point. An application to �nancial market modeling, 2025b.
https://arxiv.org/abs/2503.20449.
� L. Gardini, D. Radi, N. Schmitt, I. Sushko, F. Westerho�. Abundance of weird
quasiperiodic attractors in piecewise linear discontinuous maps, 2025c.
https://doi.org/10.48550/arXiv.2504.04778.
� L. Gardini, D. Radi, N. Schmitt, I. Sushko, F. Westerho�. How risk aversion may shape
the dynamics of stock markets: A chartist-fundamentalist approach, 2025d (in progress).
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PWL Homogeneous Maps: Introduction

� In Gardini et al. 2025a, to simplify the analysis, we consider a modi�ed (discontinuous
and homogeneous) version of the 2D BCB normal forms:

F =

�
FL : (x; y)! (�Lx+ y;��Lx) if x < h;
FR : (x; y)! (�Rx+ y;��Rx) if x > h:

� Recall: 2D BCB normal form is a continuous PWL map

M =

�
ML : (x; y)! (�Lx+ y+�;��Lx) if x � 0;
MR : (x; y)! (�Rx+ y+�;��Rx) if x � 0:

� The characteristic property of map F : maps FL and FR; are homogeneous, with the
same �xed point in the origin, and it is quite straightforward to prove that map F
cannot have hyperbolic cycles. So, one can immediately exclude the possibility that its
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Map F : Preliminaries

So, we consider a 2D discontinuous PWL map F : R2 ! R2; de�ned as follows:

F =

8>><
>>:

FL :

�
x
y

�
! JL

�
x
y

�
if x < h;

FR :

�
x
y

�
! JR

�
x
y

�
if x > h;

h = �1;

where

JL =

�
�L 1
��L 0

�
; JR =

�
�R 1
��R 0

�
:

Here, �i = det Ji; �i = trJi; i = L;R; are real parameters.

Indexes L and R refer to the
left and right partitions of the phase plane,

DL = f(x; y) : x < �1g ; DR = f(x; y) : x > �1g ;

separated by the discontinuity line C�1 = f(x; y) : x = �1g: The images of C�1 are
denoted as

CL = FL(C�1) = f(x; y) : y = �Lg; C
R = FR(C�1) = f(x; y) : y = �Rg:
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Map F : Preliminaries

Examples of WQA of map F

(a) �L = 0:75, �R = 1:2, �L = �0:7, �R = �2:5; (b) �L = 0:7, �R = 1:001, �L = 0:3, �R = 0:71; �L = 0:9, �R = 1:1,
�L = �2:5, (c) �R = �0:7; (d) �R = �1:2; (e) �L = 0:84, �R = 1:15, �L = �1, �R = �1:9; (f) �L = 1:05, �R = 0:7,
�L = �0:75, �R = �1:6.
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Map F : Preliminaries

Examples of coexisting WQAs with basins

(a) �L = 0:9, �R = 1:1, �L = 0:3, �R = 0:71; (b) �L = 0:9, �R = 1:11, �L = �2, �R = �1:91.
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Map F : Weird Quasiperiodic Attractors

A weird quasiperiodic attractor (WQA) A of map F
(a) is a topological attractor : a closed invariant (F (A) = A) set with a dense trajectory
and an attracting neighborhood (any point of this neighborhood is attracted to A);

(b) does not include periodic points;
(c) F on A is not homeomorphic to a 1D circle map.

Thus, A is neither an attracting cycle nor a chaotic attractor: it is the closure of

quasiperiodic trajectories, with 'weird' geometric structure.

� Other kinds of attractors with quasiperiodic dynamics: a Cantor set attractor (as in a
gap map), or a critical attractor (as in the logistic map at the Feigenbaum points), a
strange nonchaotic attractor, SNA (in maps with quasiperiodic forcing), have a fractal

structure, in contrast to WQAs. A closed invariant curve with irrational rotation: map
is homeomorphic to a circle map.
� In special cases, F can have an attractor with a rather simple structure (e.g., a �nite
number of segments). It be studied by a 1D map (a �rst return map on one of the
segments). E.g., for �L = 0 or �R = 0; the entire partition DL or DR, resp., is mapped
into the straight line y = 0: If a �rst return map to this line exists, with a �nite number
of branches, then it is topologically conjugate to a 1D PWL circle map with a rational or
irrational rotation number (Gardini et al. 2025b).
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Map F : Properties

Property 1

The �xed point O = (0; 0) 2 DR of map FR is the unique �xed point of map F;
provided no eigenvalue of FR equals 1; i.e., 1� �R + �R 6= 0:

Property 2

Invertibility of map F is of (a) Z1 � Z0 � Z1 type for 0 < �R < �L; or �L < �R < 0;
(b) Z1 � Z2 � Z1 type for �R < �L < 0; or 0 < �L < �R;
(c) Z0 � Z1 � Z2 type for �L�R < 0; (d) Z1 � Z1 � Z1 � Z0 type for �L = 0; �R 6= 0;
(e) Z0 � Z1 � Z0 � Z1 type for �R = 0; �L 6= 0; (f) Z1 � Z2 � Z1 type for �R = �L:
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Map F : Properties

Property 3

In the (�i; �i)-parameter plane, i = L;R; the eigenvalues �i1;2 = 1

2
(�i �

p
� 2i � 4�i) of

matrix Ji satisfy
���i1;2�� < 1 in the stability triangle T i; de�ned as

T i = f(�i; �i) : �i < 1; �1� �i < �i < 1 + �ig:
T i is bounded by the segments of the straight lines �i = 1 + �i (related to �i1 = 1),
�i = �1� �i (related to �i2 = �1), and �i = 1 (related to complex-conjugate j�i1;2j = 1).

Property 4

For the �xed point O; the boundary of TR de�ned by �R = 1 + �R corresponds to a
degenerate +1 bifurcation, at which any point of hal�ine
SR = f(x; y) : x > �1; y = ��Rxg is �xed; the boundary de�ned by �R = �1� �R
corresponds to a degenerate �ip bifurcation, at which any point (except the �xed point

O) of segment SR
2

= f(x; y) : �1 < x < 1; y = �Rxg is 2-periodic; the boundary
de�ned by �R = 1 corresponds to a center bifurcation of O; at which for a rational
rotation number � = m=n of matrix JR; i.e., for �R = 2 cos(2�m=n); there exists an
invariant polygon with n sides �lled with nonhyperbolic cycles having rotation number
m=n; while if � is irrational, there then exists an invariant region �lled with quasiperiodic
trajectories and bounded by an invariant ellipse tangent to the discontinuity line C�1.
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Map F : Properties

Let F� denote a composite map, F� = F�0 � F�1 ::: � F�n�1 ; where � = �0�1:::�n�1 is a
symbolic sequence with �j 2 fL;Rg; n � 2:

The corresponding Jacobian matrix is J� =

n�1Y
j=0

J�j ; and its characteristic polynomial is

P�(�) = �2 � trJ��+ det J� = 0:
The �xed point equation F�(x; y) = (x; y) has a unique solution (x; y) = (0; 0); provided
that P�(1) 6= 0 (i.e., matrix J� has no eigenvalue 1), so that the unique hyperbolic �xed
point of F� for any � is the �xed point O: Thus, the following property holds:

Property 5

Map F cannot have cycles of period n for any n � 2; except for nonhyperbolic n-cycles
with an eigenvalue equal to 1.

Property 6

Map F has a maximal admissible set of n cyclic segments (bounded or one-side
unbounded), say, S� = fS�j g

n�1
j=0 ; n � 2; �lled with nonhyperbolic n-cycles (with

eigenvalue +1) having symbolic sequence �; provided that P�(1) = 0; det J� 6= 1; and
S�j = V �

j � D�j for all j = 0; n� 1: Here V �
j are eigenvectors of J� related to � = 1.
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Bifurcation structure of map F : WQA and divergence

How to get boundaries associated with P�(1) = 0 and set S� of n cyclic segments �lled
with nonhyperbolic �-cycles?

We illustrate the corresponding steps using basic symbolic sequences

� = LRn�1 and � = RLn�1; n � 3;

as well as symbolic sequences that are complementary to these sequences, namely,

� = L2Rn�2 and � = R2Ln�2;

respectively, assuming the simplest case of rotation number � = 1=n.

Rotation number of a cycle

For a (nonhyperbolic) cycle with a symbolic sequence �; by its rotation number

� = m=n; we mean that along the cycle the trajectory makes m turns around the origin
in n iterations.
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Bifurcation structure of map F : WQA and divergence

Bifurcation structure of map F in the (�L; �R)- and (�R; �R)-parameter plane

Blue and yellow parameter regions indicate convergence to the �xed point O and to a
WQA, respectively. Gray regions indicate divergence.

(a) the (�L; �R)-parameter plane for �L = 0:9; �R = 0:7, and (b) the (�R; �R)-parameter plane for �L = 0:9; �L = �2:5.

The boundaries B
LRn�1

and B
L2Rn�2

of the divergence region DR
1=n

; and the boundaries B
RLn�1

and B
R2Ln�2

of

the divergence region DL
1=n

are shown for n = 2; :::; 9:
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Bifurcation structure of map F : WQA and divergence

A 1D bifurcation diagram of map F showing x versus �L in (a), and y versus �L in (b)
for �L = 0:9; �R = 0:7; and �R = �2:
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Divergence regions and dangerous BCB of O at h = 0

An analogue of a dangerous BCB in the 2D BCBNF (see e.g., Ganguli & Banerjee 2005)
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Dynamics of map F near the divergence region DR
1=5
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Dynamics of map F near the divergence region DL
1=5
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Dynamics of map F near the divergence region DL
1=5
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Dynamics of map F near the divergence region DL
1=5
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Dynamics of map F near the divergence region DL
1=5

In the yellow regions, there is a dense set of curves associated with rational
rotation numbers and the existence of corresponding bounded segments �lled with
nonhyperbolic cycles, but the general case is the existence of WQAs associated
with irrational rotation numbers.
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A mechanism of the appearance of a WQA (schematically)

WQA can be seen as a limit set of the iterations of the segment (P; P�), where P is an
intersection point of the discontinuity line and the eigenvector V �

0 (associated before
with a segment S�0 of nonhyperbolic �-cycles), and P� = F �(P ).
In the above example, a dense quasiperiodic trajectory on the WQA includes critical
point PR = FR(P ), so that WQA is a closure of the trajectory with the initial point PR.
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Bifurcation boundaries in the parameter space of map F

Recall: the existence of a set S� = fS�i g
i=n�1
i=0 of n segments �lled with nonhyperbolic

�-cycles is associated with the conditions P�(1) = 0, moreover, the related admissibility
conditions must be satis�ed: all the segments must be located in the proper partitions.

Existence of S� for � = LRn�1; � = L2Rn�2, n � 3

BLRn�1 : PLRn�1(1) = 1��Lan�1+(�L+�R)an�2+�L�
n�1
R = 0 and (ALRn�1) holds;

BL2Rn�2 : PL2Rn�2(1) = 1 + (�L(�L + �R)��L�R)an�3 � (� 2L � 2�L)an�2+

+ �2L�
n�2
R = 0 and (AL2Rn�2) holds;

where (ALRn�1) : SLR
n�1

0 � DL; S
LRn�1

j � DR; j = 1; n� 1,

(AL2Rn�2) : SL
2Rn�2

0 � DL; S
L2Rn�2

1 � DL; S
L2Rn�2

j � DR; j = 2; n� 1;
and ak is the solution of the second-order homogeneous linear di�erence equation
ak = �Rak�1 � �Rak�2; a0 = 1; a1 = �R; k = 2; 3; : : : :

BLRn�1 and BL2Rn�2 are boundaries of the divergence region DR
1=n if there exists

corresponding �-cycle at in�nity (i.e., all the segments are admissible and one-side
unbounded).
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Bifurcation boundaries in the parameter space of map F

Transition from real to complex-conjugate eigenvalues of matrix JLRn�1 = Jn�1R JL and
matrix JL2Rn�2 = Jn�2R J2L occurs crossing a parameter set ELRn�1 and EL2Rn�2 ,
respectively, de�ned as follows:

ELRn�1 : (�Lan�1 � (�L + �R)an�2)
2 � 4�L�

n�1
R = 0;

EL2Rn�2 : ((�L�R � �L(�L + �R))an�3 + (� 2L � 2�L)an�2)� 4�2L�
n�2
R = 0:

The boundary HLRn�1 is de�ned as follows:

HLRn�1 : �Lan�3 � �Lan�2 = 0; HLRn�1 � DR
1=n:

� On one side of boundary HLRn�1 ; it holds that the unstable eigenvectors V
LRn�1

j are

admissible, while eigenvectors V L2Rn�2

j are not admissible (so that an attracting
LRn�1-cycle at in�nity exists, while the L2Rn�2-cycle is virtual);

� On the other side of boundary HLRn�1 , the unstable eigenvectors V
L2Rn�2

j are

admissible, while eigenvectors V LRn�1

j are not admissible (so that an attracting
L2Rn�2-cycle at in�nity exists, while the LRn�1-cycle is virtual).
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Bifurcation boundaries in the parameter space of map F

Existence of S� for � = RLn�1; � = R2Ln�2, n � 3

BRLn�1 : PRLn�1(1) = 1��Rbn�1+(�R+�L)bn�2+�R�
n�1
L = 0 and (ARLn�1) holds;

BR2Ln�2 : PR2Ln�2(1) = 1 + (�R(�L+�R)� �R�L)bn�3 � (� 2R � 2�R)bn�2+

+ �2R�
n�2
L = 0 and (AR2Ln�2) holds;

where
(ARLn�1) : SRL

n�1

0 � DR; S
RLn�1

j � DL; j = 1; n� 1;

(AR2Ln�2) : SR
2Ln�2

0 � DR; S
R2Ln�2

1 � DR; S
R2Ln�2

j � DL; j = 2; n� 1:

and bk is a solution of the second-order homogeneous linear di�erence equation

bk = �Lbk�1 � �Lbk�2; b0 = 1; b1 = �L; k = 2; 3; : : : :

BRLn�1 and BR2Ln�2 are boundaries of the divergence region DL
1=n if there exists

corresponding �-cycle at in�nity (i.e., all the segments are admissible and one-side
unbounded).
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Bifurcation boundaries in the parameter space of map F

Transition from real to complex-conjugate eigenvalues of matrix JRLn�1 = Jn�1L JR and
matrix JR2Ln�2 = Jn�2L J2R occurs crossing a parameter set ERLn�1 and ER2Ln�2 ,
respectively, de�ned as follows:

ERLn�1 : (�Rbn�1 � (�R + �L)bn�2)
2 � 4�R�

n�1
L = 0;

ER2Ln�2 : ((�R�L � �R(�R + �L))bn�3 + (� 2R � 2�R)bn�2)� 4�2R�
n�2
L = 0:

The boundary HRLn�1 is de�ned as follows:

HRLn�1 : �Rbn�3 � �Rbn�2 = 0; HRLn�1 � DL
1=n:

� On one side of boundary HRLn�1 ; it holds that the unstable eigenvectors V
RLn�1

j are

admissible, while eigenvectors V R2Ln�2

j are not admissible (so that an attracting
RLn�1-cycle at in�nity exists, while the R2Ln�2-cycle is virtual);

� On the other side of boundary HRLn�1 , the unstable eigenvectors V
R2Ln�2

j are

admissible, while eigenvectors V RLn�1

j are not admissible (so that an attracting
R2Ln�2-cycle at in�nity exists, while the RLn�1-cycle is virtual).
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