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Sequels were never good.



Highlights Part I:

1 The response of total population to increasing dispersal is
monotonic or unimodal.

2 That is general: unaffected by asymmetry or considering
continuous time.



What does make a sequel good?



A twist!



Highlight Part II:

1 There are models with more than four different responses of
total population to increasing dispersal.
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Coupled dynamical systems

A B

fA fB
m

m

Dispersal model {
xt+1 = (1 − m)fA(xt) + m fB(yt),
yt+1 = m fA(xt) + (1 − m)fB(yt),

with t ∈ N,

x , y the population sizes in A and B,

m ∈ [0,0.5] the dispersal rate.



Does local dynamics affect number of responses?

A B

fA fB
m

m

Beverton-Holt maps (monotone, simple dynamics / contest )

fi(x) :=
rix

1 + x/Mi

Ricker maps (unimodal, rich dynamics / scramble )

fi(x) := rixe−x/Mi

Quadratic maps (unimodal, rich dynamics / scramble )

fi(x) := rix(1 − x/Mi)

with ri > 0 and Mi > 0 for i ∈ {A,B}.



Is H well defined?

Dispersal is beneficial/detrimental depending on the sign of function

H(m) := x(m) + y(m)− (KA + KB),

with KA and KB the attractors of fA and fB when isolated.

1 Ricker: ri ∈ (1, e2) and m ∈ [0,0.5]
Bajo and Ruiz-Herrera. Math. Biosciences (2017).

Positive equilibrium is a strong attractor in the sense of Liz and Ruiz-Herrera, J. Diff. Equations (2013).

(Jiménez-López provided them the proof of a key result).

2 Quadratic: ri ∈ (1,3) and m ∈ [0,0.5].



Shift points

Lemma
Assume KA ̸= KB. The zeros of H are{

x − fA(x)
KA + KB − 2fA(x)

∣∣∣∣ψ(x) = 0
}
∩ [0,0.5],

where ψ : [0,KA + KB] → R is given by

ψ(x) := fA(x) + fB(KA + KB − x)− KA − KB.

Proposition (Ricker)

Assume 0 < rA, rB ≤ e2 and KA ̸= KB. Then, ψ (equivalently, H) has
at most four zeros.



Ricker
New scenarios!
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Relevance. No characterization as in B-H.



Ruling out an scenario

Proposition.

Assume H is well defined in [0,0.5]. Then, the response scenario
Detrimental/Beneficial/Detrimental/Beneficial is not possible.

Proof. Assume that H has four zeros in the interval [0,0.5).
To rule out the scenario in the statement, we prove H(0.5) < 0H(0.5) < 0H(0.5) < 0.
For given m ∈ [0,0.5), (x(m), y(m)) belongs to the set

C =
{
(x , y) ∈ R2

+ | fA(x)− x + fB(y)− y = 0
}
.



C is a simple curve of class one joining the points (KA,0) and (0,KB),
and passing through (KA,KB).

Consider the segment of C parametrized by the dispersal rate

CH = {(x(m), y(m)) | m ∈ [0,0.5)} .



C is a simple curve of class one joining the points (KA,0) and (0,KB),
and passing through (KA,KB).

Consider the segment of C parametrized by the dispersal rate

CH = {(x(m), y(m)) | m ∈ [0,0.5)} .



Consider
L =

{
(x , y) ∈ R2 | x + y = KA + KB

}
.

By hypothesis,
L ∩ (C \ CH) = ∅.

Since x + y < KA + KB for both (KA,0) /∈ CH and (0,KB) /∈ CH , then
the inequality holds for all points in C \ CH . Given that
(x(0.5), y(0.5)) ∈ C \ CH , we have

x(0.5) + y(0.5) < KA + KB =⇒ H(0.5) < 0

□



Why the differences between B-H and Ricker?

Scramble/Contest?

Unimodal/Monotone?

No



Why the differences between B-H and Ricker?

Scramble/Contest?

Unimodal/Monotone?

No



Quadratic
Similar results to B-H

u* u* m*
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Convexity

BH and the quadratic map are concave downward in their whole
domains, but Ricker has an inflection point.

Shift points are obtained by transforming the zeros of

ψ(x) = fA(x) + fB(KA + KB − x)− (KA + KB)

by the map x 7→ m = x−fA(x)
KA+KB−2fA(x)

.

If f ′′A < 0 and f ′′B < 0, then ψ′′ < 0 and ψ can have at most two zeros.



More patches

Coupling n maps

xi(t + 1) =
n∑

j=1

dij fj(xj(t)), i ∈ {1, . . . ,n},

0 ≤ dji ≤ 1 give the fraction that moves from i to j . We assume no
cost to dispersal, i.e.,

∑n
i=1 dij = 1 for all j ∈ {1, . . . ,n}.

With matrix notation

X (t + 1) = D F (X (t))T ,

D = (dij), X (t) = (x1(t), . . . , xn(t)), F (X (t)) = (f1(x1(t)), . . . , fn(xn(t))).



1 Do the response scenarios depend on the number of patches
within the metapopulation?

2 Revisiting previous results about the effect of increasing
connectivity.



1 2

3

Assumption

The probability of using a path i depends on the number ni of
colonization routes leaving it: each path has the same probability of
being used.

D =

 1 − m m
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New scenarios!
A 3-patch ring topology under the previous assumption and with B-H
local dynamics presents the same responses of the 2-patch Ricker
case.



Effect of increasing connectivity
Change a chain to a ring
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3
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Ruiz-Herrera, A. Metapopulation dynamics and total biomass: Understanding
the effects of diffusion in complex networks, Theor. Popul. Biol. (2018).
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δ′(0) = H ′
c(0)− H ′

r (0) > 0



R-H affirms that connecting source patches that were initially
disconnected is always beneficial. However, this becomes false when
more biologically realistic maps allowing for different intraspecific
competition strengths in the subpopulations are considered.
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Assumption B

Dispersal depends on the probability to remain in a patch with
independence of the number of connections of it with other patches.

Dc =

 1 − m 0 m
2

0 1 − m m
2

m m 1 − m

 Dr =

 1 − m m
2

m
2

m
2 1 − m m

2
m
2

m
2 1 − m





Under Assumption B

Connecting source patches that were initially disconnected, even with
the same intraspecific competition strengths in the subpopulations!,
can be beneficial or detrimental.



Thank you!



A final twist
Some species have breeding areas where move for reproduction.
Consider a population using three patches: one is the breeding site
and the other two (labelled 1 and 2) are feeding sites.
Model the following basic processes:

Adults produce Juveniles, denoted J, in the breeding site;

Juveniles become Adults and move to patch 1 or 2, denoted A1
and A2;

Adults in patch 1 or 2 remain in that patch or move to the other.

1 2

B

f

1− s s

r



J(t + 1) = f
(
A1(t) + A2(t)

)
,

A1(t + 1) = (1 − s)J(t) + (1 − r)λA1(t) + rµA2(t),
A2(t + 1) = sJ(t) + rλA1(t) + (1 − r)µA2(t),

 (1)

where r , s, λ, µ ∈ [0,1] are constants and f : R+ → R+.
Remark: System (1) extends the Allen-Clark model (λ = µ)

z(t + 1) = αz(t) + βf (z(t − 1)).

Symbol Interpretation (each per time-step)
f recruitment function of new Juveniles
ri proportion of Adults who move from site i to 3 − i
s proportion of Juveniles who move to patch 2
λ survival probability of Adults in site 1
µ survival probability of Adults in site 2


