Attracting fixed points for the Buchner-Żebrowski equation: the role of negative Schwarzian derivative

Progress on Difference Equations International Conference (PODE 2025)

Cartagena, May 28-30, 2025

José Ginés Espín Buendía

(joint work, still in progress, with Víctor Jiménez López, Univ. de Murcia)

Departamento de Didáctica de las Matemáticas, Universidad de Murcia, Spain

(□) (@) (E) (E) E

Preliminaries	

Does local attraction imply global attraction?

Table of contents

Preliminaries

Table of contents

Preliminaries

Table of contents

2 Local attraction for the Buchner-Żebrowski equation

Oces local attraction imply global attraction?

Preliminaries	
•0000000	

Does local attraction imply global attraction'

Notation and basic notions

A difference equation is an expression given by

$$x_{n+1} = g(x_n, x_{n-1}, \dots, x_{n-k}), \quad n \ge 0, \quad (x_0, x_{-1}, \dots, x_{-k}) \in I^{k+1},$$
 (DE)

where:

Preliminaries	Local attraction for	the
●0000000		

Does local attraction imply global attraction

Notation and basic notions

A difference equation is an expression given by

$$x_{n+1} = g(x_n, x_{n-1}, \dots, x_{n-k}), \quad n \ge 0, \quad (x_0, x_{-1}, \dots, x_{-k}) \in I^{k+1},$$
 (DE)

where:

● *I* is a (not necessarily compact) subinterval of ℝ;

Preliminaries	Local attraction for the Buchr
•0000000	

Notation and basic notions

A difference equation is an expression given by

$$x_{n+1} = g(x_n, x_{n-1}, \dots, x_{n-k}), \quad n \ge 0, \quad (x_0, x_{-1}, \dots, x_{-k}) \in I^{k+1},$$
 (DE)

where:

- *I* is a (not necessarily compact) subinterval of \mathbb{R} ;
- $k + 1 \in \mathbb{Z}^+$: *order* of the equation;

Preliminaries	Local attraction for the Buchner-Żebrowski equation
•0000000	

Notation and basic notions

A difference equation is an expression given by

$$x_{n+1} = g(x_n, x_{n-1}, \dots, x_{n-k}), \quad n \ge 0, \quad (x_0, x_{-1}, \dots, x_{-k}) \in I^{k+1},$$
 (DE)

where:

- *I* is a (not necessarily compact) subinterval of ℝ;
- $k + 1 \in \mathbb{Z}^+$: *order* of the equation;
- $g: I^{k+1} \rightarrow I$ is a continuous (sufficiently smooth) map;

Preliminaries	Local attraction for the Buchner-Ż
•0000000	

Notation and basic notions

A difference equation is an expression given by

$$x_{n+1} = g(x_n, x_{n-1}, \dots, x_{n-k}), \quad n \ge 0, \quad (x_0, x_{-1}, \dots, x_{-k}) \in I^{k+1},$$
 (DE)

where:

- *I* is a (not necessarily compact) subinterval of ℝ;
- $k + 1 \in \mathbb{Z}^+$: *order* of the equation;
- $g: I^{k+1} \rightarrow I$ is a continuous (sufficiently smooth) map;

ebrowski equation

• Orbit: $(x_n)_{n=-k}^{+\infty}$ starting from the *initial condition* $(x_0, x_{-1}, \ldots, x_{-k})$;

Preliminaries	Local attraction for the Buchner-2
0000000	

Notation and basic notions

A difference equation is an expression given by

$$x_{n+1} = g(x_n, x_{n-1}, \dots, x_{n-k}), \quad n \ge 0, \quad (x_0, x_{-1}, \dots, x_{-k}) \in I^{k+1},$$
 (DE)

where:

- *I* is a (not necessarily compact) subinterval of ℝ;
- $k + 1 \in \mathbb{Z}^+$: *order* of the equation;
- $g: I^{k+1} \rightarrow I$ is a continuous (sufficiently smooth) map;

ebrowski equation

• Orbit: $(x_n)_{n=-k}^{+\infty}$ starting from the *initial condition* $(x_0, x_{-1}, \ldots, x_{-k})$;

• Fixed point:
$$u = g(u, u, \ldots, u)$$
.

Preliminaries	Local	attraction	for the	Buchner-Że
0000000				

Notation and basic notions

A difference equation is an expression given by

$$x_{n+1} = g(x_n, x_{n-1}, \dots, x_{n-k}), \quad n \ge 0, \quad (x_0, x_{-1}, \dots, x_{-k}) \in I^{k+1},$$
 (DE)

where:

- *I* is a (not necessarily compact) subinterval of ℝ;
- $k + 1 \in \mathbb{Z}^+$: *order* of the equation;
- $g: I^{k+1} \rightarrow I$ is a continuous (sufficiently smooth) map;

browski equation

- Orbit: $(x_n)_{n=-k}^{+\infty}$ starting from the *initial condition* $(x_0, x_{-1}, \ldots, x_{-k})$;
- *Fixed point*: u = g(u, u, ..., u).

Our general aim: to study the dynamics (the asymptotic behaviour) of the orbits of (DE).

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Preliminaries	
0000000	

Does local attraction imply global attraction?

Local and global attraction

A first obvious remark:

If an orbit (x_n) of (DE) converges to $u \in I$, then u is a fixed point.

Does local attraction imply global attraction?

Local and global attraction

A first obvious remark:

If an orbit (x_n) of (DE) converges to $u \in I$, then u is a fixed point.

Definition

A fixed point u is

• a *global attractor* of (DE) if all orbits converge to *u*.

Does local attraction imply global attraction?

Local and global attraction

A first obvious remark:

If an orbit (x_n) of (DE) converges to $u \in I$, then u is a fixed point.

Definition

A fixed point u is

- a *global attractor* of (DE) if all orbits converge to *u*.
- a *local attractor* of (DE) if orbits with initial conditions close enough to u converge to u; if the opposite is true, then we say that u is *non-attracting*.

Does local attraction imply global attraction?

Local and global attraction

A first obvious remark:

If an orbit (x_n) of (DE) converges to $u \in I$, then u is a fixed point.

Definition

A fixed point u is

- a *global attractor* of (DE) if all orbits converge to *u*.
- a *local attractor* of (DE) if orbits with initial conditions close enough to u converge to u; if the opposite is true, then we say that u is *non-attracting*.
- stable for (DE) if there exists a neighbourhood of *u* (as small as wanted) such that g(U^{k+1}) ⊂ U.

Does local attraction imply global attraction?

Local and global attraction

A first obvious remark:

If an orbit (x_n) of (DE) converges to $u \in I$, then u is a fixed point.

Definition

A fixed point u is

- a *global attractor* of (DE) if all orbits converge to *u*.
- a *local attractor* of (DE) if orbits with initial conditions close enough to u converge to u; if the opposite is true, then we say that u is *non-attracting*.
- stable for (DE) if there exists a neighbourhood of *u* (as small as wanted) such that g(U^{k+1}) ⊂ U.
- L.A.S (resp. G.A.S) if is a stable local (resp. global) attractor.

Local and global attraction

A first obvious remark:

If an orbit (x_n) of (DE) converges to $u \in I$, then u is a fixed point.

Definition

A fixed point u is

- a *global attractor* of (DE) if all orbits converge to *u*.
- a *local attractor* of (DE) if orbits with initial conditions close enough to u converge to u; if the opposite is true, then we say that u is *non-attracting*.
- stable for (DE) if there exists a neighbourhood of *u* (as small as wanted) such that g(U^{k+1}) ⊂ U.
- L.A.S (resp. G.A.S) if is a stable local (resp. global) attractor.

Our more specific aim: to study whether local attraction may imply global attraction for (DE).

Preliminaries
00000000

Does local attraction imply global attraction?

The Allwright-Singer theorem

We say that the map $f : I \rightarrow I$ belongs to the class S if it satisfies the following properties:

Preliminaries
0000000

Does local attraction imply global attraction?

The Allwright-Singer theorem

We say that the map $f : I \rightarrow I$ belongs to the class S if it satisfies the following properties:

(S1) there is $u \in I$ such that f(x) > x (respectively, f(x) < x) for any x < u (respectively, x > u).

The Allwright-Singer theorem

We say that the map $f : I \rightarrow I$ belongs to the class *S* if it satisfies the following properties:

- (S1) there is $u \in I$ such that f(x) > x (respectively, f(x) < x) for any x < u (respectively, x > u).
- (S2) f'(x) vanishes at most at one point *c* (a relative extremum of *f*).

The Allwright-Singer theorem

We say that the map $f : I \rightarrow I$ belongs to the class *S* if it satisfies the following properties:

- (S1) there is $u \in I$ such that f(x) > x (respectively, f(x) < x) for any x < u (respectively, x > u).
- (S2) f'(x) vanishes at most at one point *c* (a relative extremum of *f*).
- (S3) Sf(x) < 0 for any $x \in I$ (except possibly at *c*). Here, the Schwarzian derivative of f at x, Sf(x), is given by

$$Sf(x) = rac{f'''(x)}{f'(x)} - rac{3}{2} \left(rac{f''(x)}{f'(x)}
ight)^2.$$

The Allwright-Singer theorem

We say that the map $f : I \rightarrow I$ belongs to the class *S* if it satisfies the following properties:

- (S1) there is $u \in I$ such that f(x) > x (respectively, f(x) < x) for any x < u (respectively, x > u).
- (S2) f'(x) vanishes at most at one point *c* (a relative extremum of *f*).
- (S3) Sf(x) < 0 for any $x \in I$ (except possibly at *c*). Here, the Schwarzian derivative of f at x, Sf(x), is given by

$$Sf(x) = rac{f'''(x)}{f'(x)} - rac{3}{2} \left(rac{f''(x)}{f'(x)}
ight)^2.$$

Theorem (Allwright, Singer 1978)

Consider the order 1 equation

$$\mathbf{x}_{n+1} = \mathbf{f}(\mathbf{x}_n), \quad n \ge 0, \quad \mathbf{x}_0 \in I; \tag{FO}$$

If *f* belongs to the class *S* and *u* is a local attractor for (FO), that is, $|f'(u)| \le 1$, then *u* is a global attractor of (FO).

Local attraction for the Buchner-Żebrowski equation

Does local attraction imply global attraction?

Extra 00000000

A map of the class S: the Ricker map

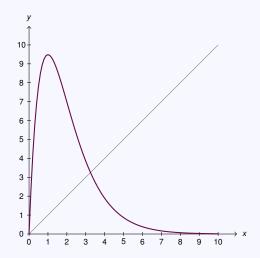


Figure 1: The Ricker map $f(x) = pxe^{-qx}$ with $p = e^{3.25}$, q = 1, u = 3.25.

æ

イロト 不得 トイヨト イヨト

ocal attraction for the Buchner-Żebrowski equation

Does local attraction imply global attraction?

The Buchner-Żebrowski equation

The Buchner-Żebrowski equation (Buchner & Żebrowski 2000):

$$x_{n+1} = (1 - \alpha)f(x_n) + \alpha x_{n-k}, \quad 0 < \alpha < 1$$
 (BZ_k)

 Preliminaries
 Local attraction for the Buchner-Żebrowski equation

 00000000
 0000000

Does local attraction imply global attracti

The Buchner-Żebrowski equation

The Buchner-Żebrowski equation (Buchner & Żebrowski 2000):

$$x_{n+1} = (1 - \alpha)f(x_n) + \alpha x_{n-k}, \quad 0 < \alpha < 1$$
 (BZ_k)

T. Buchner and & J. J. Żebrowski, *Logistic map with a delayed feedback: Stability of a discrete time-delay control of chaos*, Phys. Rev. E, 2000.

Does local attraction imply global attraction?

The Buchner-Żebrowski equation

The Buchner-Żebrowski equation (Buchner & Żebrowski 2000):

$$x_{n+1} = (1 - \alpha)f(x_n) + \alpha x_{n-k}, \quad 0 < \alpha < 1$$
 (BZ_k)

T. Buchner and & J. J. Żebrowski, *Logistic map with a delayed feedback: Stability of a discrete time-delay control of chaos*, Phys. Rev. E, 2000.

Motivation:

- Control of chaos: sometimes (FO) behaves "chaotically", while (BZ_k) does not.
- Applications in digital filter design.

Preliminaries	Local attraction for the Buchner-Żebrowski equatio
00000000	

The "physics" of (BZ_k)

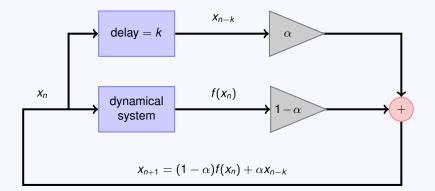


Figure 2: Block diagram for the Buchner-Żebrowski control law.

Preliminaries
00000000

Does local attraction imply global attraction?

The domination property

An important fact: *u* is a fixed point of $(BZ_k) \Leftrightarrow u$ is a fixed point of (FO).

Does local attraction imply global attraction?

The domination property

An important fact: u is a fixed point of $(BZ_k) \Leftrightarrow u$ is a fixed point of (FO).

Theorem (El-Morshedy & Jiménez López 2008)

If *u* is L.A.S (resp. G.A.S) for (FO), then it is also L.A.S (resp. G.A.S) for (BZ_k). In particular, if *f* belongs to the class *S* and $|f'(u)| \le 1$, then *u* is G.A.S for (BZ_k).

Does local attraction imply global attraction?

The domination property

An important fact: u is a fixed point of $(BZ_k) \Leftrightarrow u$ is a fixed point of (FO).

Theorem (El-Morshedy & Jiménez López 2008)

If *u* is L.A.S (resp. G.A.S) for (FO), then it is also L.A.S (resp. G.A.S) for (BZ_k). In particular, if *f* belongs to the class *S* and $|f'(u)| \le 1$, then *u* is G.A.S for (BZ_k).

Theorem 1 (E.B. & Jiménez López 2025)

When *k* is odd, even more is true: the fixed point *u* is L.A.S (resp. G.A.S) for (FO) \Leftrightarrow *u* is a L.A.S (resp. G.A.S) for (BZ_k).

The domination property

An important fact: u is a fixed point of $(BZ_k) \Leftrightarrow u$ is a fixed point of (FO).

Theorem (El-Morshedy & Jiménez López 2008)

If *u* is L.A.S (resp. G.A.S) for (FO), then it is also L.A.S (resp. G.A.S) for (BZ_k) . In particular, if *f* belongs to the class *S* and $|f'(u)| \le 1$, then *u* is G.A.S for (BZ_k) .

Theorem 1 (E.B. & Jiménez López 2025)

When *k* is odd, even more is true: the fixed point *u* is L.A.S (resp. G.A.S) for (FO) \Leftrightarrow *u* is a L.A.S (resp. G.A.S) for (BZ_k).

On the other hand, it is quite possible that, when k is even, u is locally attracting for (BZ_k), while it is unstable (in particular, non-attracting) for (FO).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

Local attraction for the Buchner-Żebrowski equation

Does local attraction imply global attraction?

The specific aim of this work

Our precise aim: to study whether L.A.S. implies G.A.S. for (BZ_k) when *k* is even, *f* belongs to the class *S* and |f'(u)| > 1.

Local attraction for the Buchner-Żebrowski equation

Does local attraction imply global attraction?

The specific aim of this work

Our precise aim: to study whether L.A.S. implies G.A.S. for (BZ_k) when k is even, f belongs to the class S and |f'(u)| > 1.

Theorem (Liz & Franco 2010)

If f belongs to the class S, then local attraction implies global attraction for (BZ_0) .

Local attraction for the Buchner-Żebrowski equation

Does local attraction imply global attraction?

The specific aim of this work

Our precise aim: to study whether L.A.S. implies G.A.S. for (BZ_k) when k is even, f belongs to the class S and |f'(u)| > 1.

Theorem (Liz & Franco 2010)

If f belongs to the class S, then local attraction implies global attraction for (BZ_0) .

It is also easy to prove that if f'(u) > -1, (BZ_k) is unstable. So:

In what follows we always assume f'(u) < -1 and k > 0 even.

Local attraction for the Buchner-Żebrowski equation

Does local attraction imply global attraction?

The specific aim of this work

Our precise aim: to study whether L.A.S. implies G.A.S. for (BZ_k) when k is even, f belongs to the class S and |f'(u)| > 1.

Theorem (Liz & Franco 2010)

If f belongs to the class S, then local attraction implies global attraction for (BZ_0) .

It is also easy to prove that if f'(u) > -1, (BZ_k) is unstable. So:

In what follows we always assume f'(u) < -1 and k > 0 even.

The Buchner-Żebrowski equation:

$$x_{n+1} = (1 - \alpha)f(x_n) + \alpha x_{n-k}, \quad 0 < \alpha < 1$$
 (BZ_k)

Local attraction for the Buchner-Żebrowski equation

Does local attraction imply global attraction?

The specific aim of this work

Our precise aim: to study whether L.A.S. implies G.A.S. for (BZ_k) when k is even, f belongs to the class S and |f'(u)| > 1.

Theorem (Liz & Franco 2010)

If f belongs to the class S, then local attraction implies global attraction for (BZ_0) .

It is also easy to prove that if f'(u) > -1, (BZ_k) is unstable. So:

In what follows we always assume f'(u) < -1 and k > 0 even.

The Clark equation (Clark 1976):

$$x_{n+1} = \alpha x_n + (1 - \alpha) f(x_{n-k}), \quad 0 < \alpha < 1$$
 (CE_k)

Preliminaries 0000000 Local attraction for the Buchner-Żebrowski equation

Does local attraction imply global attraction?

Extra 00000000

The specific aim of this work

Our precise aim: to study whether L.A.S. implies G.A.S. for (BZ_k) when k is even, f belongs to the class S and |f'(u)| > 1.

Theorem (Liz & Franco 2010)

If f belongs to the class S, then local attraction implies global attraction for (BZ_0) .

It is also easy to prove that if f'(u) > -1, (BZ_k) is unstable. So:

In what follows we always assume f'(u) < -1 and k > 0 even.

The Clark equation (Clark 1976):

$$x_{n+1} = \alpha x_n + (1 - \alpha)f(x_{n-k}), \quad 0 < \alpha < 1$$
 (CE_k)

V. Jiménez Lopez & E. Parreño, *L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation*, J. Dyn. Diff. Equat., 2016.

Preliminaries	
00000000	

Does local attraction imply global attraction?

Local attraction for the Buchner-Żebrowski equation

Preliminaries 00000000

Does local attraction imply global attraction?

Local attraction for the Buchner-Żebrowski equation

Let
$$(r_k(\Theta), \alpha_k(\Theta))$$
 be given by

$$r_k(\Theta) = -\frac{\sin(\frac{\Theta}{2})}{\sin(\frac{(k-1)\Theta}{2(k+1)})},$$

$$\Theta \in [0, \pi].$$

$$\alpha_k(\Theta) = \frac{\sin(\frac{\Theta}{k+1})}{\sin(\frac{k\Theta}{k+1})},$$

Note that $r_k(\Theta)$ maps increasingly $[0, \pi]$ onto $\left[-\frac{k+1}{k-1}, -\frac{1}{\cos(\frac{\pi}{k+1})}\right]$. The curve $(r_k(\Theta), \alpha_k(\Theta))$ can also be seen as the graph of an increasing function $\alpha = a_k(r), r \in \left[-\frac{k+1}{k-1}, -\frac{1}{\cos(\frac{\pi}{k+1})}\right]$, with

$$a_k(-\frac{k+1}{k-1}) = \frac{1}{k}, \quad a_k(-\frac{1}{\cos(\frac{\pi}{k+1})}) = 1.$$

Preliminaries

Does local attraction imply global attraction?

Local attraction for the Buchner-Żebrowski equation

Let
$$(r_k(\Theta), \alpha_k(\Theta))$$
 be given by

$$r_k(\Theta) = -\frac{\sin(\frac{\Theta}{2})}{\sin(\frac{(k-1)\Theta}{2(k+1)})},$$

$$\Theta \in [0, \pi].$$

$$\alpha_k(\Theta) = \frac{\sin(\frac{\Theta}{k+1})}{\sin(\frac{k\Theta}{k+1})},$$

Theorem (Kuruklis 1994)

Let r = f'(u). Then u is locally attracting (respectively, non-attracting) for (BZ_k) if $\frac{r+1}{r-1} < \alpha < a_k(r)$ (respectively, $\alpha > a_k(r)$ or $\alpha < \frac{r+1}{r-1}$).

Does local attraction imply global attraction?

Local attraction for the Buchner-Żebrowski equation

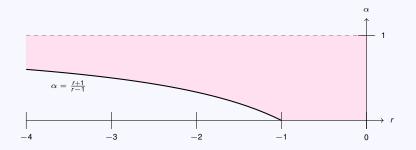


Figure 5: Local attraction (in green) for the Buchner-Żebrowski equation; "pink" means that this attraction is known to be global (when f belongs to the class S).

Does local attraction imply global attraction?

Local attraction for the Buchner-Żebrowski equation

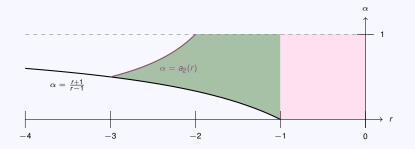


Figure 5: Local attraction (in green) for the Buchner-Żebrowski equation; "pink" means that this attraction is known to be global (when f belongs to the class S).

Does local attraction imply global attraction?

Local attraction for the Buchner-Żebrowski equation

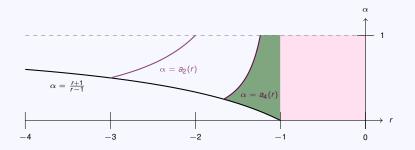


Figure 5: Local attraction (in green) for the Buchner-Żebrowski equation; "pink" means that this attraction is known to be global (when f belongs to the class S).

Preliminaries

Does local attraction imply global attraction?

Extra 00000000

On the Neimark-Sacker bifurcation

A natural way to investigate the conjecture is to study the bifurcation arising at $\alpha = a_k(r)$. It turns out that, under generic conditions, a *Neimark-Sacker bifurcation* arises involving the appearance of an invariant curve near the fixed point *u*.

Does local attraction imply global attraction?

Extra 00000000

On the Neimark-Sacker bifurcation

A natural way to investigate the conjecture is to study the bifurcation arising at $\alpha = a_k(r)$. It turns out that, under generic conditions, a *Neimark-Sacker bifurcation* arises involving the appearance of an invariant curve near the fixed point *u*.

For the Buchner-Żebrowski equation:

If $\epsilon > 0$ is small enough, then two possibilities arise:

- if $a_k(r) < \alpha < a_k(r) + \epsilon$, then there is an invariant (attracting) curve near u; if $a_k(r) \epsilon < \alpha \le a_k(r)$, then there is no invariant curve near u (supercritical N-S bifurcation).
- if $a_k(r) \le \alpha < a_k(r) + \epsilon$, then there is no invariant curve near u; if $a_k(r) \epsilon < \alpha < a_k(r)$, then there is a (non-attracting) invariant curve near u (subcritical N-S bifurcation)

Does local attraction imply global attraction?

Extra 00000000

On the Neimark-Sacker bifurcation

A natural way to investigate the conjecture is to study the bifurcation arising at $\alpha = a_k(r)$. It turns out that, under generic conditions, a *Neimark-Sacker bifurcation* arises involving the appearance of an invariant curve near the fixed point *u*.

For the Buchner-Żebrowski equation:

If $\epsilon > 0$ is small enough, then two possibilities arise:

- if $a_k(r) < \alpha < a_k(r) + \epsilon$, then there is an invariant (attracting) curve near u; if $a_k(r) \epsilon < \alpha \le a_k(r)$, then there is no invariant curve near u (supercritical N-S bifurcation).
- if $a_k(r) \le \alpha < a_k(r) + \epsilon$, then there is no invariant curve near u; if $a_k(r) \epsilon < \alpha < a_k(r)$, then there is a (non-attracting) invariant curve near u (subcritical N-S bifurcation)

In the supercritical case the conjecture is reinforced; in the subcritical case the conjecture is disproved!

Preliminaries	
00000000	

Does local attraction imply global attraction?

Extra 00000000

On the Neimark-Sacker bifurcation

$$N_k(\Theta) = D_k(\Theta)(1 + \frac{1}{2}(A_k(\Theta) + B_k(\Theta))), \qquad \Theta \in [0, \pi].$$

Prel	imin	arie	
	000	000	00

Does local attraction imply global attraction?

Extra 00000000

On the Neimark-Sacker bifurcation

$$N_k(\Theta) = D_k(\Theta)(1 + \frac{1}{2}(A_k(\Theta) + B_k(\Theta))), \qquad \Theta \in [0, \pi].$$

For the Buchner-Żebrowski equation:

$$\begin{split} A_k(\Theta) &= \frac{1+4\sin(\frac{\Theta}{2(k+1)})\cos(\frac{k\Theta}{2(k+1)})\sin(\frac{(k-1)\Theta}{2(k+1)})}{1+8\sin(\frac{\Theta}{2(k+1)})\cos(\frac{k\Theta}{2(k+1)})\sin(\frac{\Theta}{2})},\\ B_k(\Theta) &= \frac{(k+1)\sin(\frac{\Theta}{k+1})\sin(\frac{k\Theta}{k+1})}{(k+1)\sin(\frac{\Theta}{k+1})\cos(\frac{k\Theta}{k+1})-\sin\Theta}\\ &\quad \cdot \frac{4\sin(\frac{\Theta}{2(k+1)})\cos(\frac{k\Theta}{2(k+1)})\cos(\frac{(k-1)\Theta}{2(k+1)})}{1+8\sin(\frac{\Theta}{2(k+1)})\cos(\frac{k\Theta}{2(k+1)})\sin(\frac{\Theta}{2})},\\ D_k(\Theta) &= \frac{\sin(\frac{\Theta}{2})}{\sin(\frac{k\Theta}{2(k+1)})\cos(\frac{\Theta}{2(k+1)})}. \end{split}$$

Preliminaries	
00000000	

Does local attraction imply global attraction?

Extra 00000000

On the Neimark-Sacker bifurcation

The role of Schwarzian derivative

$$\Sigma f(u) := rac{f'''(u)f'(u)}{(f''(u))^2}$$

- if f'''(u) < 0, then $\Sigma f(u) := \infty$
- if f'''(u) = 0, then $\Sigma f(u) := \frac{3}{2}$
- if f'''(u) > 0, then $\Sigma f(u) := -\infty$

Preliminaries 00000000 Local attraction for the Buchner-Żebrowski equation 000000●

Does local attraction imply global attraction?

Extra 00000000

On the Neimark-Sacker bifurcation

The role of Schwarzian derivative

$$\Sigma f(u) := rac{f'''(u)f'(u)}{(f''(u))^2}$$

- if f'''(u) < 0, then $\Sigma f(u) := \infty$
- if f'''(u) = 0, then $\Sigma f(u) := \frac{3}{2}$

$$\Sigma f(u) < \frac{3}{2} \quad \Leftrightarrow \quad Sf(u) < 0$$

Preliminaries	
00000000	

Does local attraction imply global attraction?

Extra 00000000

On the Neimark-Sacker bifurcation

The role of Schwarzian derivative

$$\Sigma f(u) := rac{f'''(u)f'(u)}{(f''(u))^2}$$

- if f'''(u) < 0, then $\Sigma f(u) := \infty$
- if f'''(u) = 0, then $\Sigma f(u) := \frac{3}{2}$

• if
$$f'''(u) > 0$$
, then $\Sigma f(u) := -\infty$

$$\Sigma f(u) = \frac{3}{2} \quad \Leftrightarrow \quad Sf(u) = 0$$

Preliminaries 00000000 Local attraction for the Buchner-Żebrowski equation 000000●

Does local attraction imply global attraction?

Extra 00000000

On the Neimark-Sacker bifurcation

The role of Schwarzian derivative

$$\Sigma f(u) := rac{f'''(u)f'(u)}{(f''(u))^2}$$

- if f'''(u) < 0, then $\Sigma f(u) := \infty$
- if f'''(u) = 0, then $\Sigma f(u) := \frac{3}{2}$

$$\Sigma f(u) > \frac{3}{2} \quad \Leftrightarrow \quad Sf(u) > 0$$

Preliminaries
00000000

Does local attraction imply global attraction?

Extra 00000000

On the Neimark-Sacker bifurcation

The role of Schwarzian derivative

$$\Sigma f(u) := rac{f'''(u)f'(u)}{(f''(u))^2}$$

If f''(u) = 0:

- if f'''(u) < 0, then $\Sigma f(u) := \infty$
- if f'''(u) = 0, then $\Sigma f(u) := \frac{3}{2}$

• if
$$f'''(u) > 0$$
, then $\Sigma f(u) := -\infty$

$$\Sigma f(u) > \frac{3}{2} \quad \Leftrightarrow \quad Sf(u) > 0$$

Theorem 2 (E.B. & Jiménez López & 2025)

Let Θ be such that $f'(u) = r = r_k(\Theta)$. Then (BZ_k) exhibit a supercritical (respectively, a subcritical) Neimark-Sacker bifurcation at $\alpha = a_k(r) = \alpha_k(\Theta)$ if $\Sigma f(u) < N_k(\Theta)$ (respectively, if $N_k(\Theta) < \Sigma f(u)$).

Does local attraction imply global attraction?

Does L.A. imply G.A. ?: the Buchner-Żebrowski equation case

The important things about the maps $N_k(\Theta)$:

- they are strictly increasing;
- we have

$$N_{k}(0) = \frac{3(k-3)(k+1)}{2(k-1)k}$$

$$< \frac{3+4\sin^{2}(\frac{\pi}{2(k+1)})(4+\cos(\frac{\pi}{k+1})+\sin(\frac{\pi}{k+1})\tan(\frac{k\pi}{k+1}))}{(2+16\sin^{2}(\frac{\pi}{2(k+1)}))\cos^{2}(\frac{\pi}{2(k+1)})} = N_{k}(\pi) < \frac{3}{2};$$
• $N_{k}(\Theta) \rightarrow \frac{3}{2}$ as $k \rightarrow \infty$ (uniformly).

Does local attraction imply global attraction?

・ロット (雪) (日) (日) (日)

Does L.A. imply G.A. ?: the Buchner-Żebrowski equation case

The important things about the maps $N_k(\Theta)$:

- they are strictly increasing;
- we have

$$N_{k}(0) = \frac{3(k-3)(k+1)}{2(k-1)k}$$

$$< \frac{3+4\sin^{2}(\frac{\pi}{2(k+1)})(4+\cos(\frac{\pi}{k+1})+\sin(\frac{\pi}{k+1})\tan(\frac{k\pi}{k+1}))}{(2+16\sin^{2}(\frac{\pi}{2(k+1)}))\cos^{2}(\frac{\pi}{2(k+1)})} = N_{k}(\pi) < \frac{3}{2}$$

$$N_{k}(\Theta) \rightarrow \frac{3}{2} \text{ as } k \rightarrow \infty \text{ (uniformly).}$$

For instance,

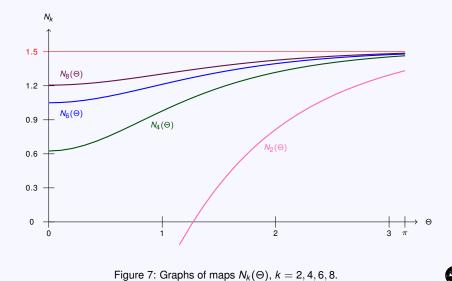
- $N_2(\Theta) \ge -9/4$,
- N₄(Θ) ≥ 5/8,
- $N_6(\Theta) \geq 21/20...$

Preliminaries Local attraction for the Buchner-Żebrowski equation 00000000 0000000

Does local attraction imply global attraction?

<ロ> (四) (四) (三) (三) (三) (三)

Does L.A. imply G.A. ?: the Buchner-Żebrowski equation case



Does local attraction imply global attraction?

Does L.A. imply G.A. ?: the Buchner-Żebrowski equation case

Recall:

- If Σf(u) < N_k(Θ) (resp., if N_k(Θ) < Σf(u)), then the bifurcation is supercritical (resp., subcritical);
- $\Sigma f(u) < \frac{3}{2}$ means that Sf(u) < 0;
- $N_k(\Theta)$ is smaller than $\frac{3}{2}$ and goes to $\frac{3}{2}$ as $k \to \infty$.

Does L.A. imply G.A. ?: the Buchner-Żebrowski equation case

Recall:

- If Σf(u) < N_k(Θ) (resp., if N_k(Θ) < Σf(u)), then the bifurcation is supercritical (resp., subcritical);
- $\Sigma f(u) < \frac{3}{2}$ means that Sf(u) < 0;
- $N_k(\Theta)$ is smaller than $\frac{3}{2}$ and goes to $\frac{3}{2}$ as $k \to \infty$.

Theorem 3 (E.B. & Jiménez López 2025)

We have:

- (a) the larger the delay *k*, the higher the chances that the bifurcation is supercritical;
- (b) If Sf(u) > 0, then the bifurcation, regardless k, is always subcritical;
- (c) If Sf(u) < 0 and k is large enough, then the bifurcation is always supercritical.

Preliminaries

Local attraction for the Buchner-Żebrowski equation

Does local attraction imply global attraction?

Does L.A. imply G.A.?: the Buchner-Żebrowski equation case

An example: the Ricker map $f(x) = pxe^{-qx}$

Preliminaries	
00000000	

Does local attraction imply global attraction?

Does L.A. imply G.A.?: the Buchner-Żebrowski equation case

An example: the Ricker map $f(x) = pxe^{-qx}$

k = 2: the bifurcation is supercritical if 20.0855 = e³ 4</sup> = 58.5982;

Preliminaries	

Does local attraction imply global attraction?

Does L.A. imply G.A.?: the Buchner-Żebrowski equation case

An example: the Ricker map $f(x) = pxe^{-qx}$

- *k* = 2: the bifurcation is supercritical if 20.0855 = e³ 4</sup> = 58.5982;
- $k \ge 4$: the bifurcation is supercritical.

References

T. Buchner & J. J. ?ebrowski, Logistic map with a delayed feedback: Stability of a discrete time-delay control of chaos, Phys. Rev. E, 2000.

H. A. El-Morshedy & V. Jiménez López, Global attractors for difference equations dominated by one-dimensional maps, J. Differ. Equ. Appl., 2008, 14(4), 391–410.

V. Jiménez López & E. Parreño, L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation, J. Dyn. Differ. Equat., 2016.

S. A. Kuruklis, The asymptotic stability of $x_{n+1} - ax_n + bx_{n-k} = 0$, J. Math. Anal. Appl., 1994, 188, 719–731.

E. Liz & D. Franco, Global stabilization of fixed points using predictive control, Chaos, 2010, 20, 023124.

V. G. Papanicolaou, On the asymptotic stability of a class of linear difference equations, Math. Mag., 1996, 69, 34–43.

J. G. Espín Buendía & V. Jiménez López, Stability, negative Schwarzian derivative, and control of chaos, Universidad de Murcia (in progress).

Does local attraction imply global attraction? ○○○○○●

THANK YOU VERY MUCH FOR YOUR KIND ATTENTION!

Preliminaries

Does local attraction imply global attraction?

The Clark equation

The Clark equation (Clark 1976):

$$x_{n+1} = \alpha x_n + (1 - \alpha)f(x_{n-k}), \quad 0 < \alpha < 1$$

 (CE_k)

Preliminaries	Local

The Clark equation

The Clark equation (Clark 1976):

$$x_{n+1} = \alpha x_n + (1 - \alpha)f(x_{n-k}), \quad 0 < \alpha < 1$$

 (CE_k)

Motivation:

- x_n represents the number of adult members of the population in the year n, α is the annual survival rate, and $h = (1 \alpha)f$ is the recruitment function, which depends on the number of adults k years before.
- It is the discretization of some famous delay differential equations (Gurney, Blythe & Nisbet 1980, — Nicholson's blowflies—, Mackey-Glass 1977 —hematopoiesis—...).

Does local attraction imply global attraction?: the Clark equation case

Theorem

Let Θ be such that $f'(u) = r = r_k(\Theta)$. Then (BZ_k) exhibit a supercritical (respectively, a subcritical) Neimark-Sacker bifurcation at $\alpha = a_k(r) = \alpha_k(\Theta)$ if $\Sigma f(u) < N_k(\Theta)$ (respectively, if $N_k(\Theta) < \Sigma f(u)$).

The important things about the maps $N_k(\Theta)$:

$$N_k(\pi) = \frac{3/2}{N'_k(\pi)} = \frac{1}{4\sin(\frac{\pi}{k+1})} (1 - \cos(\frac{\pi}{k+1}))(2\cos(\frac{\pi}{k+1}) - 1)$$

・ロ ・ ・ 同 ・ ・ 回 ・ ・ 日 ・

ъ

Does local attraction imply global attraction?: the Clark equation case

Theorem

Let Θ be such that $f'(u) = r = r_k(\Theta)$. Then (BZ_k) exhibit a supercritical (respectively, a subcritical) Neimark-Sacker bifurcation at $\alpha = a_k(r) = \alpha_k(\Theta)$ if $\Sigma f(u) < N_k(\Theta)$ (respectively, if $N_k(\Theta) < \Sigma f(u)$).

The important things about the maps $N_k(\Theta)$:

$$N_k(\pi) = \frac{3/2}{N'_k(\pi)} = \frac{1}{4\sin(\frac{\pi}{k+1})} (1 - \cos(\frac{\pi}{k+1}))(2\cos(\frac{\pi}{k+1}) - 1)$$

In particular, $N'_k(\pi) > 0$ for any $k \ge 3$.

Preliminaries

Does local attraction imply global attraction

Does local attraction imply global attraction?: the Clark equation case

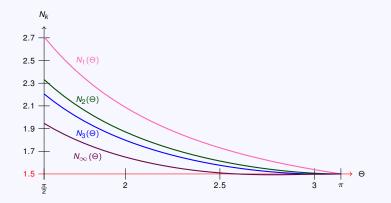


Figure 6: Graphs of maps $N_k(\Theta)$, k = 1, 2, 3, and $N_{\infty}(\Theta) := \lim_{k \to \infty} N_k(\Theta)$.

Preliminaries

Does local attraction imply global attraction?

Does local attraction imply global attraction?: the Clark equation case

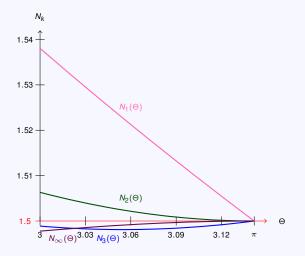


Figure 6: Graphs of maps $N_k(\Theta)$, $k = 1, 2, 3, \infty$ (detail).

ъ

ヘロト ヘ戸ト ヘヨト ヘヨト

Does local attraction imply global attraction?

L.A. and negative Schwarzian derivative should imply G.A.!

Recall:

- If Σf(u) < N_k(Θ) (resp., if N_k(Θ) < Σf(u)), then the bifurcation is supercritical (resp., subcritical);
- $\Sigma f(u) < \frac{3}{2}$ means that Sf(u) < 0;
- $N_k(\Theta)$ is "almost always" greater than $\frac{3}{2}$.

Does local attraction imply global attraction?

L.A. and negative Schwarzian derivative should imply G.A.!

Recall:

- If Σf(u) < N_k(Θ) (resp., if N_k(Θ) < Σf(u)), then the bifurcation is supercritical (resp., subcritical);
- $\Sigma f(u) < \frac{3}{2}$ means that Sf(u) < 0;
- $N_k(\Theta)$ is "almost always" greater than $\frac{3}{2}$.

Theorem (Jiménez López & Parreño 2016)

Assume that one of the following conditions holds:

- (a) $k \le 2$ and Sf(u) < 0;
- (b) f'(u) < -1.18 and Sf(u) < 0;
- (c) $\Sigma f(u) < 1.49$.

Then (CE_k) exhibits a supercritical Neimark-Sacker bifurcation at $\alpha = a_k(r)$, r = f'(u).

イロト 不良 とくほう イロン しゅ

Does local attraction imply global attraction?

L.A. and negative Schwarzian derivative should imply G.A.!

An example: the Ricker map

The Ricker map $f(x) = pxe^{-qx}$, $x \in I = (0, \infty)$, belongs to the class *S* for any p > 1, q > 0. We have:

•
$$U = \frac{\log p}{q}$$
,

•
$$f'(u) = 1 - \log p$$
,

•
$$\Sigma f(u) = 1 - \frac{1}{(2 - \log(p))^2};$$

hence f'(u) < -1 and $\Sigma f(u) < 1$ whenever $p > e^2$, q > 0.

Does local attraction imply global attraction?

L.A. and negative Schwarzian derivative should imply G.A.!

An example: the Ricker map

The Ricker map $f(x) = pxe^{-qx}$, $x \in I = (0, \infty)$, belongs to the class *S* for any p > 1, q > 0. We have:

•
$$U = \frac{\log p}{q}$$
,

•
$$f'(u) = 1 - \log p$$
,

•
$$\Sigma f(u) = 1 - \frac{1}{(2 - \log(p))^2};$$

hence f'(u) < -1 and $\Sigma f(u) < 1$ whenever $p > e^2$, q > 0.

In particular, the bifurcation is always supercritical.

Does local attraction imply global attraction?

L.A. and negative Schwarzian derivative need not imply G.A.!

Recall:

- If Σf(u) < N_k(Θ) (resp., if N_k(Θ) < Σf(u)), then the bifurcation is supercritical (resp., subcritical);
- $\Sigma f(u) < \frac{3}{2}$ means that Sf(u) < 0;
- $N_k(\Theta)$ is "almost always" greater than $\frac{3}{2}$.

L.A. and negative Schwarzian derivative need not imply G.A.!

Recall:

- If Σf(u) < N_k(Θ) (resp., if N_k(Θ) < Σf(u)), then the bifurcation is supercritical (resp., subcritical);
- $\Sigma f(u) < \frac{3}{2}$ means that Sf(u) < 0;
- $N_k(\Theta)$ is "almost always" greater than $\frac{3}{2}$.

Theorem 3 (Jiménez López & Parreño 2014)

Let f_{ϵ} , $0 < \epsilon < \epsilon_0$, be C^4 maps. Assume that for any ϵ there is $u_{\epsilon} \in I$ such that the following conditions are satisfied for $D(\epsilon) := f'_{\epsilon}(u_{\epsilon})$, $T(\epsilon) := \Sigma f_{\epsilon}(u_{\epsilon})$:

- (i) $f_{\epsilon}(u_{\epsilon}) = u_{\epsilon};$
- (ii) $\lim_{\epsilon \to 0} D(\epsilon) = -1$, $\lim_{\epsilon \to 0} D'(\epsilon) = d < 0$;
- (iii) $\lim_{\epsilon \to 0} T(\epsilon) = 3/2$, $\lim_{\epsilon \to 0} T'(\epsilon) = 0$.

Then, if $k \ge 3$, $\epsilon > 0$ is small enough and we put $h = h_{\epsilon}$, $u = u_{\epsilon}$, (CE_k) exhibits a subcritical Neimark-Sacker bifurcation at $\alpha = a_k(r)$, r = f'(u). In particular, if $\alpha > a_k(r)$ is close enough to $a_k(r)$, then u is a local, but not global, attractor of (CE_k) .

Does local attraction imply global attraction?

L.A. and negative Schwarzian derivative need not imply G.A.!

A simple example belonging to the class S

Let

$$f_{\epsilon}(x) = rac{1}{(1-2\epsilon)(\epsilon+(1-\epsilon)x)+2\epsilon(\epsilon+(1-\epsilon)x)^2},$$

with:

- *k* = 3,
- $\epsilon = 0.00167086$,
- $u_{\epsilon} = 1$,
- *α* = 0.00573994.

L.A. and negative Schwarzian derivative need not imply G.A.!

A simple example belonging to the class S

Let

$$f_{\epsilon}(x) = rac{1}{(1-2\epsilon)(\epsilon+(1-\epsilon)x)+2\epsilon(\epsilon+(1-\epsilon)x)^2},$$

with:

- *k* = 3,
- $\epsilon = 0.00167086$,
- $u_{\epsilon} = 1$,
- *α* = 0.00573994.

In this case, the bifurcation is subcritical.

