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Notation and basic notions

A difference equation is an expression given by

xn+1 = g(xn, xn−1, . . . , xn−k ), n ≥ 0, (x0, x−1, . . . , x−k ) ∈ Ik+1, (DE)

where:

I is a (not necessarily compact) subinterval of R;

k + 1 ∈ Z+: order of the equation;

g : Ik+1 → I is a continuous (sufficiently smooth) map;

Orbit: (xn)
+∞
n=−k starting from the initial condition (x0, x−1, . . . , x−k );

Fixed point: u = g(u, u, . . . , u).

Our general aim: to study the dynamics (the asymptotic behaviour) of the
orbits of (DE).
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Local and global attraction

A first obvious remark:

If an orbit (xn) of (DE) converges to u ∈ I, then u is a fixed point.

Definition

A fixed point u is

a global attractor of (DE) if all orbits converge to u.

a local attractor of (DE) if orbits with initial conditions close enough to u
converge to u; if the opposite is true, then we say that u is non-attracting.

stable for (DE) if there exists a neighbourhood of u (as small as wanted)
such that g(Uk+1) ⊂ U.

L.A.S (resp. G.A.S) if is a stable local (resp. global) attractor.

Our more specific aim: to study whether local attraction may imply global
attraction for (DE).
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The Allwright-Singer theorem

We say that the map f : I → I belongs to the class S if it satisfies the following
properties:

(S1) there is u ∈ I such that f (x) > x (respectively, f (x) < x) for any x < u
(respectively, x > u).

(S2) f ′(x) vanishes at most at one point c (a relative extremum of f ).

(S3) Sf (x) < 0 for any x ∈ I (except possibly at c). Here, the Schwarzian
derivative of f at x, Sf (x), is given by

Sf (x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

.

Theorem (Allwright, Singer 1978)

Consider the order 1 equation

xn+1 = f (xn), n ≥ 0, x0 ∈ I; (FO)

If f belongs to the class S and u is a local attractor for (FO), that is,
|f ′(u)| ≤ 1, then u is a global attractor of (FO).
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A map of the class S: the Ricker map
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Figure 1: The Ricker map f (x) = pxe−qx with p = e3.25, q = 1, u = 3.25.
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The Buchner-Żebrowski equation

The Buchner-Żebrowski equation (Buchner & Żebrowski 2000):

xn+1 = (1 − α)f (xn) + αxn−k , 0 < α < 1 (BZk )

T. Buchner and & J. J. Żebrowski, Logistic map with a delayed
feedback: Stability of a discrete time-delay control of chaos, Phys.
Rev. E, 2000.

Motivation:

Control of chaos: sometimes (FO) behaves “chaotically”, while (BZk )
does not.

Applications in digital filter design.
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The “physics” of (BZk )

dynamical
system

delay = k

+1−α

α

xn+1 = (1 − α)f (xn) + αxn−k

xn f (xn)

xn−k

Figure 2: Block diagram for the Buchner-Żebrowski control law.
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The domination property

An important fact:
u is a fixed point of (BZk ) ⇔ u is a fixed point of (FO).

Theorem (El-Morshedy & Jiménez López 2008)

If u is L.A.S (resp. G.A.S) for (FO), then it is also L.A.S (resp. G.A.S) for
(BZk ). In particular, if f belongs to the class S and |f ′(u)| ≤ 1, then u is G.A.S
for (BZk ).

Theorem 1 (E.B. & Jiménez López 2025)

When k is odd, even more is true: the fixed point u is L.A.S (resp. G.A.S) for
(FO) ⇔ u is a L.A.S (resp. G.A.S) for (BZk ).

On the other hand, it is quite possible that, when k is even, u is locally
attracting for (BZk ), while it is unstable (in particular, non-attracting) for (FO).
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The specific aim of this work

Our precise aim: to study whether L.A.S. implies G.A.S. for (BZk ) when k is
even, f belongs to the class S and |f ′(u)| > 1.

Theorem (Liz & Franco 2010)

If f belongs to the class S, then local attraction implies global attraction for
(BZ0).

It is also easy to prove that if f ′(u) > −1, (BZk ) is unstable. So:

In what follows we always assume f ′(u) < −1 and k > 0 even.

V. Jiménez Lopez & E. Parreño, L.A.S. and negative Schwarzian
derivative do not imply G.A.S. in Clark’s equation, J. Dyn. Diff. Equat.,
2016.
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Preliminaries Local attraction for the Buchner-Żebrowski equation Does local attraction imply global attraction? Extra

The specific aim of this work

Our precise aim: to study whether L.A.S. implies G.A.S. for (BZk ) when k is
even, f belongs to the class S and |f ′(u)| > 1.

Theorem (Liz & Franco 2010)

If f belongs to the class S, then local attraction implies global attraction for
(BZ0).

It is also easy to prove that if f ′(u) > −1, (BZk ) is unstable. So:

In what follows we always assume f ′(u) < −1 and k > 0 even.
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Local attraction for the Buchner-Żebrowski equation

Let (rk (Θ), αk (Θ)) be given by

rk (Θ) = −
sin(Θ2 )

sin( (k−1)Θ
2(k+1) )

,

αk (Θ) =
sin( Θ

k+1 )

sin( kΘ
k+1 )

,

Θ ∈ [0, π].

Note that rk (Θ) maps increasingly [0, π] onto [− k+1
k−1 ,−

1
cos( π

k+1 )
]. The curve

(rk (Θ), αk (Θ)) can also be seen as the graph of an increasing function α =
ak (r), r ∈ [− k+1

k−1 ,−
1

cos( π
k+1 )

], with

ak (− k+1
k−1 ) =

1
k , ak (− 1

cos( π
k+1 )

) = 1.
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Local attraction for the Buchner-Żebrowski equation

Let (rk (Θ), αk (Θ)) be given by

rk (Θ) = −
sin(Θ2 )

sin( (k−1)Θ
2(k+1) )

,

αk (Θ) =
sin( Θ

k+1 )

sin( kΘ
k+1 )

,

Θ ∈ [0, π].

Theorem (Kuruklis 1994)

Let r = f ′(u). Then u is locally attracting (respectively, non-attracting) for
(BZk ) if r+1

r−1 < α < ak (r) (respectively, α > ak (r) or α < r+1
r−1 ).
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Local attraction for the Buchner-Żebrowski equation

−4 −3 −2 −1 0

1

r

α

α = r+1
r−1

Figure 5: Local attraction (in green) for the Buchner-Żebrowski equation; “pink” means
that this attraction is known to be global (when f belongs to the class S).
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On the Neimark-Sacker bifurcation

A natural way to investigate the conjecture is to study the bifurcation arising
at α = ak (r). It turns out that, under generic conditions, a Neimark-Sacker
bifurcation arises involving the appearance of an invariant curve near the
fixed point u.

For the Buchner-Żebrowski equation:

If ϵ > 0 is small enough, then two possibilities arise:

if ak (r) < α < ak (r) + ϵ, then there is an invariant (attracting) curve near
u; if ak (r)− ϵ < α ≤ ak (r), then there is no invariant curve near u
(supercritical N-S bifurcation).

if ak (r) ≤ α < ak (r) + ϵ, then there is no invariant curve near u; if
ak (r)− ϵ < α < ak (r), then there is a (non-attracting) invariant curve
near u (subcritical N-S bifurcation)

In the supercritical case the conjecture is reinforced; in the subcritical case
the conjecture is disproved!
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Preliminaries Local attraction for the Buchner-Żebrowski equation Does local attraction imply global attraction? Extra

On the Neimark-Sacker bifurcation

A natural way to investigate the conjecture is to study the bifurcation arising
at α = ak (r). It turns out that, under generic conditions, a Neimark-Sacker
bifurcation arises involving the appearance of an invariant curve near the
fixed point u.
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On the Neimark-Sacker bifurcation

Nk (Θ) = Dk (Θ)(1 + 1
2 (Ak (Θ) + Bk (Θ))), Θ ∈ [0, π].

For the Buchner-Żebrowski equation:

Ak (Θ) =
1 + 4 sin( Θ

2(k+1) ) cos(
kΘ

2(k+1) ) sin(
(k−1)Θ
2(k+1) )

1 + 8 sin( Θ
2(k+1) ) cos(

kΘ
2(k+1) ) sin(

Θ
2 )

,

Bk (Θ) =
(k + 1) sin( Θ

k+1 ) sin(
kΘ
k+1 )

(k + 1) sin( Θ
k+1 ) cos(

kΘ
k+1 )− sinΘ

·
4 sin( Θ

2(k+1) ) cos(
kΘ

2(k+1) ) cos(
(k−1)Θ
2(k+1) )

1 + 8 sin( Θ
2(k+1) ) cos(

kΘ
2(k+1) ) sin(

Θ
2 )

,

Dk (Θ) =
sin(Θ2 )

sin( kΘ
2(k+1) ) cos(

Θ
2(k+1) )

.
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On the Neimark-Sacker bifurcation

The role of Schwarzian derivative

Σf (u) :=
f ′′′(u)f ′(u)
(f ′′(u))2

If f ′′(u) = 0:

if f ′′′(u) < 0, then Σf (u) := ∞
if f ′′′(u) = 0, then Σf (u) := 3

2

if f ′′′(u) > 0, then Σf (u) := −∞

Theorem 2 (E.B. & Jiménez López & 2025)

Let Θ be such that f ′(u) = r = rk (Θ). Then (BZk ) exhibit a supercritical
(respectively, a subcritical) Neimark-Sacker bifurcation at α = ak (r) = αk (Θ)
if Σf (u) < Nk (Θ) (respectively, if Nk (Θ) < Σf (u)).
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Does L.A. imply G.A.?: the Buchner-Żebrowski equation case

The important things about the maps Nk (Θ):

they are strictly increasing;

we have

Nk (0) =
3(k − 3)(k + 1)

2(k − 1)k

<
3 + 4 sin2( π

2(k+1) )(4 + cos( π
k+1 ) + sin( π

k+1 ) tan(
kπ

k+1 ))

(2 + 16 sin2( π
2(k+1) )) cos

2( π
2(k+1) )

= Nk (π) <
3
2
;

Nk (Θ) → 3
2 as k → ∞ (uniformly).

For instance,

N2(Θ) ≥ −9/4,

N4(Θ) ≥ 5/8,

N6(Θ) ≥ 21/20...
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Does L.A. imply G.A.?: the Buchner-Żebrowski equation case
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Figure 7: Graphs of maps Nk (Θ), k = 2, 4, 6, 8.
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Does L.A. imply G.A.?: the Buchner-Żebrowski equation case

Recall:

If Σf (u) < Nk (Θ) (resp., if Nk (Θ) < Σf (u)), then the bifurcation is
supercritical (resp., subcritical);

Σf (u) < 3
2 means that Sf (u) < 0;

Nk (Θ) is smaller than 3
2 and goes to 3

2 as k → ∞.

Theorem 3 (E.B. & Jiménez López 2025)

We have:

(a) the larger the delay k , the higher the chances that the bifurcation is
supercritical;

(b) If Sf (u) > 0, then the bifurcation, regardless k , is always subcritical;

(c) If Sf (u) < 0 and k is large enough, then the bifurcation is always
supercritical.
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Does L.A. imply G.A.?: the Buchner-Żebrowski equation case

An example: the Ricker map f (x) = pxe−qx

k = 2: the bifurcation is supercritical if 20.0855 = e3 < p < 38.7047 and
subcritical if 38.7047 < p < e4 = 58.5982;

k ≥ 4: the bifurcation is supercritical.
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The Clark equation

The Clark equation (Clark 1976):

xn+1 = αxn + (1 − α)f (xn−k ), 0 < α < 1 (CEk )

Motivation:

xn represents the number of adult members of the population in the year
n, α is the annual survival rate, and h = (1 − α)f is the recruitment
function, which depends on the number of adults k years before.

It is the discretization of some famous delay differential equations
(Gurney, Blythe & Nisbet 1980, — Nicholson’s blowflies—,
Mackey-Glass 1977 —hematopoiesis—...).
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Does local attraction imply global attraction?: the Clark equation case

Theorem

Let Θ be such that f ′(u) = r = rk (Θ). Then (BZk ) exhibit a supercritical
(respectively, a subcritical) Neimark-Sacker bifurcation at α = ak (r) = αk (Θ)
if Σf (u) < Nk (Θ) (respectively, if Nk (Θ) < Σf (u)).

The important things about the maps Nk (Θ):

Nk (π) = 3/2

N ′
k (π) =

1
4 sin( π

k+1 )
(1 − cos( π

k+1 ))(2 cos( π
k+1 )− 1)

In particular, N ′
k (π) > 0 for any k ≥ 3.
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Does local attraction imply global attraction?: the Clark equation case
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Figure 6: Graphs of maps Nk (Θ), k = 1, 2, 3, and N∞(Θ) := limk→∞ Nk (Θ).
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Does local attraction imply global attraction?: the Clark equation case
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Figure 6: Graphs of maps Nk (Θ), k = 1, 2, 3,∞ (detail).
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L.A. and negative Schwarzian derivative should imply G.A.!

Recall:

If Σf (u) < Nk (Θ) (resp., if Nk (Θ) < Σf (u)), then the bifurcation is
supercritical (resp., subcritical);

Σf (u) < 3
2 means that Sf (u) < 0;

Nk (Θ) is “almost always” greater than 3
2 .

Theorem (Jiménez López & Parreño 2016)

Assume that one of the following conditions holds:

(a) k ≤ 2 and Sf (u) < 0;

(b) f ′(u) < −1.18 and Sf (u) < 0;

(c) Σf (u) < 1.49.

Then (CEk ) exhibits a supercritical Neimark-Sacker bifurcation at α = ak (r),
r = f ′(u).
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L.A. and negative Schwarzian derivative should imply G.A.!

An example: the Ricker map

The Ricker map f (x) = pxe−qx , x ∈ I = (0,∞), belongs to the class S for any
p > 1, q > 0. We have:

u = log p
q ,

f ′(u) = 1 − log p,

Σf (u) = 1 − 1
(2−log(p))2 ;

hence f ′(u) < −1 and Σf (u) < 1 whenever p > e2, q > 0.

In particular, the bifurcation is always supercritical.
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Theorem 3 (Jiménez López & Parreño 2014)

Let fϵ, 0 < ϵ < ϵ0, be C4 maps. Assume that for any ϵ there is uϵ ∈ I such that
the following conditions are satisfied for D(ϵ) := f ′ϵ(uϵ), T (ϵ) := Σfϵ(uϵ):

(i) fϵ(uϵ) = uϵ;

(ii) limϵ→0 D(ϵ) = −1, limϵ→0 D′(ϵ) = d < 0;

(iii) limϵ→0 T (ϵ) = 3/2, limϵ→0 T ′(ϵ) = 0.

Then, if k ≥ 3, ϵ > 0 is small enough and we put h = hϵ, u = uϵ, (CEk )
exhibits a subcritical Neimark-Sacker bifurcation at α = ak (r), r = f ′(u).
In particular, if α > ak (r) is close enough to ak (r), then u is a local, but not
global, attractor of (CEk ).
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A simple example belonging to the class S

Let
fϵ(x) =

1
(1 − 2ϵ)(ϵ+ (1 − ϵ)x) + 2ϵ(ϵ+ (1 − ϵ)x)2 ,

with:

k = 3,

ϵ = 0.00167086,

uϵ = 1,

α = 0.00573994.

In this case, the bifurcation is subcritical.
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