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Motivation
Ŵ Introduction

■ The motivation comes from the spatial dynamics of Wolbachia invasion .

■ Wolbachia is an endosymbiotic bacterium that infects a wide range of arthropods.

■ It is used as a biological control agent for vector-borne diseases such as dengue,
Zika, chikungunya, and malaria. [Hoffmann and et al., ŵųŴŴ, Werren et al., ŵųųŻ]

■ It manipulates host reproductive mechanism (through cytoplasmic incompatibility)
(CI) by reducing the competence of mosquitoes to transmit pathogens.

■ It is therefore deployed in urban (dense) as well as in rural (spread-out) areas of
suspected infection.
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Existing models
Ŵ Introduction

■ Classical ODE models have offer foundational insights into Wolbachia dynamics
based on maternal transmission and fitness trade-offs.
[Dobson and et al., ŵųųŵ, Hancock and et al., ŵųŴŴ]

■ They lack spatial resolution and cannot capture heterogeneities in landscape
structure or dispersal patterns, which play a crucial role in the success or failure of
biological invasions.

■ Spatial models (reaction-diffusion equations and integro-difference equations
(IDE)) have addressed this gap.
[Kot et al., ŴżżŹ, Lewis and Kareiva, ŴżżŶ, Murray, ŵųųŵ]

■ However, they still over-simplify population structure in fragmented or patchy
environments, where mosquito habitats are inherently discrete.
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New approaches
Ŵ Introduction

■ To address this limitation, we introduce a lattice difference equation (LDE)
framework for modeling the spatial spread of Wolbachia.

■ LDEs represent spatial domains as a grid or lattice.

■ They enable modeling of mosquito movement between discrete locations.

■ They allow for a more faithful representation of local heterogeneity , habitat
fragmentation , and non-uniform dispersal. [Weinberger, ŴżŻŵ, Li and Smith, ŵųŵų]
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Goal
Ŵ Introduction

The goal is to rigorously study the dynamics of Wolbachia spread in lattice- based
mosquito populations by

■ Analyzing local stability near biologically meaningful fixed points.

■ Proving the existence of traveling waves and wavefront propagation.

■ Investigating how dispersal mechanisms interact with Allee effects to accelerate or
inhibit invasion.
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Modeling
ŵ Preliminaries

Integro-Difference Equation models
Consider the integro-difference equation of the form (see [Kot et al., ŴżżŹ]):

v(t+ 1, x) =
∫ ∞

−∞
K(x, y)f(y, v(t, y))dy,

where
• v(t, y) = infection frequency at location y and time or generation t,
• K(x, y) = K(x− y) =the dispersal kernel capturing mosquitoes movements (relative
distance from x to y). More specifically, it is the probability of moving from location
y to x.

• f(x, v(t, x))= the local growth function determined by cytoplasmic incompatibility
and fitness costs.
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Modeling
ŵ Preliminaries

▶ IDEs provide a powerful framework for modeling the spatial spread .

↪→↪→ They incorporate both local reproductive dynamics and long-range dispersal.

▶ They account for the fact that mosquito populations undergo generational turnover
with discrete time steps t .

↪→↪→ This makes them well-suited for studying wavefront propagation in
heterogeneous environments.

▶ Despite the usefulness of IDEs, they may not fully capture population dynamics in
environments where mosquito habitats are highly fragmented, leading to naturally
discrete population distributions.
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Modeling
ŵ Preliminaries

▶ An alternative approach is to use lattice difference equations (LDE) , which allows
for a more granular, spatially structured model.
▶ What is a Lattice?
Let d be a positive integer and i, j ∈ Zd. A d-dimensional integer lattice is defined as

Zd = {(k1, k2, · · · , kd) : kℓ ∈ Z, ` ∈ {1, 2, 3, · · · , d}} .

−10 −5 0 5 10

−
10

−
5

0
5

10

k1

k 2

Ŵų/ŷż



Modeling
ŵ Preliminaries

Lattice Difference Equation

For i, j ∈ Zd, put

δi = δ(xi) ,

Kij = K(xi, yj) ,

vi(t) = v(t, xi) ,

fi(vi(t)) = f(xi, v(t, xi)) .

▶ Consider the autonomous lattice difference equation (LDE) given as

vi(t+ 1) = (1− δi)fi(vi(t)) +
∑
j∈Zd

δjKijfj(vj(t)), for i ∈ Zd ,

where δi= the proportion of the population that disperses at location xi.
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Fixed points
Ŷ Stability Analysis

▶ Consider δi = δ =constant. The fixed points of the above LDE satisfy vi(t+ 1) = vi(t)
for all i ∈ Zd. This amounts to

vi(t) = (1− δ)f(vi(t)) + δ
∑
j∈Zd

Kijf(vj(t)) .

▶ If vi(t) is also a fixed point of f, then

vi(t) =
∑
j∈Zd

Kijvj(t) .

▶ In vector form, this amounts to

Kv = v, where K = (Kij)i,j∈Zd
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Main result
Ŷ Stability Analysis

Theorem

Let K̂ be the Fourier transform of the dispersal kernel K. Then we have the following:
Ŵ. If sup

k∈(Z+)d
|f′(v∗k)||(1− δ) + δK̂(k)| < 1, then the fixed point v = (v∗k) is

locally asymptotically stable (LAS).

ŵ. If sup
k∈(Z+)d

|f′(v∗k)||(1− δ) + δK̂(k)| > 1, then fixed point v = (v∗k) is unstable (UNS).
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Sketch
Ŷ Stability Analysis

▶ First, linearize around the fix point v = v∗:

vi(t+ 1) ≈ (1− δ)[v∗i + f′(v∗i )(vi(t)− v∗)] + δ
∑
j∈Zd

Kij[v∗j + f′(v∗j )(vj(t)− v∗)].

▶ Second, obtain the Jacobian:

Jij =
∂vi(t+ 1)

∂vj(t)

∣∣∣
v(t)=v∗

,

so that
Jij = (1− δ)f′(v∗i )δij + δKijf′(v∗j ),

▶ Third, write the Jacobian in Matrix form:

J = f′(v∗) [(1− δ)I+ δK] .
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Sketch
Ŷ Stability Analysis

▶ Fourth, use DFT to calculate the eigenvalues:

Ĵv(k) = f′(v∗)[(1− δ)v̂(k) + δK̂v(k)] = λv̂(k) .

▶ Hence
λk = f′(v∗k)

[
1− δ + δK̂(k)

]
, k ∈ (Z+)d .
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Dispersal Kernel Choices
Ŷ Stability Analysis

In practice, one may use one of the kernels in Table Ŵ below, with their corresponding
Fourier Transform (d = 2)

Name Kernel DFT

Cauchy C(m, n) =
γ

π(γ2 +m2 + n2)
, for some γ > 0 Ĉ(k, l) =

exp
(
−2πγ

√
k2 + l2

)
1 + e−2πγ

Power Law P(m, n) =
C

(1 +m2 + n2)γ/2
P̂(k, l) ≈ C

(1 + k2
M2 +

l2
N2 )γ/2

Gaussian G(m, n) =
1

2πσ2
exp

(
−m2 + n2

2σ2

)
Ĝ(k, l) = exp

(
−2π2σ2

(
k2

M2
+

l2

N2

))

Uniform U(m, n) =
1

MN
, for 0 ≤ m < M, 0 ≤ n < N Û(k, l) =


1

MN

(
e−πĵ kMeπĵ

l
N
sin πk

sin πk
M

· sin πl
sin πl

N

)
if k ̸= 0 ̸= l

1 if k = 0 = l

Laplace L(m, n) =


0 1 0

1 −4 1

0 1 0

 , for 0 ≤ m ≤ M, 0 ≤ n ≤ N L̂(k, l) = −4 + 2 cos
(
2πk
M

)
+ 2 cos

(
2πl
N

)

Table: Commonly used kernels and their respective Fourier Transform, where ĵ2 = −1.Ŵź/ŷż



Growth Function Choices
Ŷ Stability Analysis

In practice, one may use one of the following growth functions:
▶ TheWolbachia growth function:

f(v(t, x)) =
(1− sf)v(t, x)

shv2(t, x)− (sh + sf)v(t, x) + 1
,

where
• sh represents the cytoplasmic incompatibility (CI) intensity,
• sf represents the relative fitness cost of infected females/males and 0 < sf < sh < 1.
• v(t) represents the infection frequency at time t and location x.

▶ The logistic growth function:

f(v(t, x)) = rv((t, x)
(
1− v(t, x)

K

)(
v(t, x)
A

− 1

)
,

where
• r represents the intrinsic growth rate.
• K represents the carrying capacity,
• A represents the Allee threshold.
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Growth Function Choices
Ŷ Stability Analysis
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Example
Ŷ Stability Analysis

If we choose the dispersal kernel K such that sup
k∈(Z+)d

K̂(k) = 1, then

Function Fixed point Stability

Wolbachia

v∗ = 0 |f′(0)| = |1− sf| < 1 =⇒ LAS

v∗ = 1 |f′(1)| =
∣∣∣ 1−sf
1−sh

∣∣∣ < 1 =⇒ LAS

v∗ =
sf
sh

f′
(
sf
sh

)
=

sh − s2f
sh − shsf

> 1 =⇒ UNS

Logistic

v∗ = 0 |f′(0)| = |r| < 1 =⇒ LAS if |r| < 1

v∗ = v1 =
A+ K+

√
(A+ K)2 − 4AK

(
1 + 1

r

)
2

|f′(v1)| < 1 =⇒ LAS

v∗ = v2 =
A+ K−

√
(A+ K)2 − 4AK

(
1 + 1

r

)
2

|f′(v2)| > 1 =⇒ UNS
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Traveling Waves
ŷ Traveling Waves

▶ Traveling waves represent a spatially structured invasion where infected population spreads steadily across a
habitat.
▶ These waves determine how fast and under what conditions the infection propagates, which has biological and
epidemiological significance in disease control.

Definition
A traveling wave for the LDE is a solution written using the ansatz

vi(t) = U(ξ), ξ = i− ct ,

where
• U(ξ) is called the wave profile,
• ξ = i− ct is the traveling wave coordinate,
• c is the wave speed.

That is,

U(ξ + c) = (1− δ)f(U(ξ)) + δ
∑
j∈Zd

Kijf(U(ξ + i− j)) .
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Existence of traveling waves
ŷ Traveling Waves

Theorem
Suppose the following are true:
A1 Suppose f(0) = 0 and f(1) = 1, there exists 0 < ξ < 1 s.t. f(ξ) = ξ and f′′ changes signs at ξ.

A2 : For all i ∈ Zd, we have
∑
i∈Zd

Kij = 1.

A3: lim
ξ→∞

U(ξ) = 0. This means that the leading edge of the wave ξ → ∞ corresponds to the uninfected mosquito

population.
A4: lim

ξ→−∞
U(ξ) = 1. This means that the trailing edge of the wave ξ → −∞ corresponds to a fully established

Wolbachia-infected population.
Then the LDE defined above possesses traveling waves.

ŵŷ/ŷż



Existence of traveling waves
ŷ Traveling Waves
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Remark: Spatial coupling versus ODE/DE flow
▶ In a pure DE or local map Vt+1 = f(vt), the flow in one-dimensional and monotonic , that is, trajectories cannot
jump over an unstable fixed point.

▶ The Allee threshold A blocks spread from infinitesimal introduction.

▶ However in spatial system like theWolbachia-LDE, non-local dispersal that couples space allows spatial invasion.

▶ If the invasion exceeds A over a sufficiently wide region, the wave can self-propagate, creating a heteroclinic
connection in function space.
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Design
Ÿ Distribution of outbreak size

▶We recall that v(xi, t) represents the infection frequency at location xi and time t, that
is, the ratio of infected female or males relatively to the whole population at time t and
location xi.
▶ Define

Yit =

{
1 if there is an infected individual at location xi and time t

0 otherwise
.

▶ Therefore, we have that {
P(Yit = 1) = v(xi, t)

P(Yit = 0) = 1− v(xi, t)
.

ŵż/ŷż



Distribution of outbreak size
Ÿ Distribution of outbreak size

Theorem
Define, for all xi ∈ R, Ni = min {t ∈ Z+ : v(t+ 1, xi) = v(t, xi)} .
Let

Yi|Ni =

Ni−1∑
t=0

Yit be the outbreak size.

Then Yi|Ni has a Poisson-Binomial distribution . More over, there exists 0 < qi < 1 such that

P(Yi = k) =
∞∑

m=0

P(Yi = k|Ni = m)(1− qi)mqi ,

where

P(Yi = k|Ni = m) =
∑
U∈Λk

∏
j∈U

pij
∏
i∈Uc

(1− pij) ,

and
Λk = {Sk : Sk ⊆ {1, 2, · · · ,m} , |Sk| = k} , where |A| is the cardinality of the set A .
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Illustration
Ÿ Distribution of outbreak size

▶ Suppose pi0 = v(xi, 0) = a · 1|x|<L (Pulse function) for a given L = 2 and Ni = 400.

▶ Take equidistant values of a between ų.ŵ and ų.Ÿ.

▶We select k = 1, 3, 10, 25, and sf = 0.3, sh = 0.7, δ = 0.5.

▶▶ As the amplitude of the function v0(x), a represents the initial infection rate over
the domain [−L, L]. In the figures below, we plot Pr(Yi = k).
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Gaussian Kernel
Ÿ Distribution of outbreak size
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Laplacian Kernel
Ÿ Distribution of outbreak size
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Bi-modality as a Cost minimization Criterion
Ÿ Distribution of outbreak size

▶What the previous analysis reveals is that at low outbreak sizes (k small), the spatial
distribution of outbreak sizes (P(Yi = k))) has two regimes :
• a unimodal regime which corresponds to low values of the amplitude a
• a bimodal regime which corresponds to high values of a.

▶ For low values of a, regions around the initial release point x = 0 inside the release
interval [−L, L] are very likely to be infected whereas regions outside this interval are
unlikely to be infected overtime.
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Bi-modality as a Cost minimization Criterion
Ÿ Distribution of outbreak size

▶ Given an initial release frequency v0(x) with amplitude a and interval [−L, L], its costs
is defined as

Cost(a, L) =
∫

v0(x)dx.

▶ It the total biological or logistical effort required to initiate an infection invasion by
releasing infected individuals (e.g., mosquitoes) into a population.

Release Profile function Expression Cost

Pulse v0(x) = a · 1|x|≤L(x) 2aL

Triangular v0(x) = a
(
1− |x|

L

)
· 1|x|≤L(x) aL

Quadratic v0(x) = a
(
1− x2

L2

)
· 1|x|≤L(x)

4aL
3Ŷż/ŷż



Bi-modality as a Cost minimization Criterion
Ÿ Distribution of outbreak size

▶ Minimizing the cost of release is therefore of interest.

▶ Classically, the Asymptotic Constraints Minimization (ACM) is used:

(a∗, L∗) = Argmin
{
Cost(a, L) s.t. v(0, x) = v0(a, L) and lim

t→∞
v(t, x) = 1

}
.

▶▶ It’s computationally expensive to check lim
t→∞

v(t, x) = 1.

▶We propose theModality Constraint Minimization (MCM)

(a∗, L∗) = Argmin {Cost(a, L) s.t. Mode(a, L) = 2} .
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Bi-modality as a Cost minimization Criterion
Ÿ Distribution of outbreak size
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Bi-modality as a Cost minimization Criterion
Ÿ Distribution of outbreak size
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Ÿ Distribution of outbreak size
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Conclusion
Ź Conclusion

▶ We proposed a discrete-space framework for invasion dynamics using Lattice
Difference Equations (LDEs), offering a tractable alternative to classical PDE and IDE
models.

▶ The LDE’s discrete structure allows easy integration of spatial heterogeneity,
seasonal variation, and environmental factors affectingWolbachia dynamics.

▶ Extending the model to stochastic or random environments enables estimation of
invasion probabilities beyond deterministic outcomes.
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PODE ŵųŵŸ
Wave Propagation and Global Dynamics of Invasion via Lattice Difference Equations

Thank you for listening!
Any questions?
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