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Preliminaries
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Oblivion function

Given k, ! € Z and an order function v(-), we define oblivion
function as a discrete function of two variables, specified by its
values for any / € Z. In particular, for k < 0 we set a“()(k) =0,
and a”()(0) = 1, while for k > 0 we define

20 () = (e D00 =) = COISISENI
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Preliminaries
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Oblivion function

Formula (1) can also be expressed using the following recurrence
relation for k € N:

a’(0) =1,
v(i)+1 (2)

(k) = "Dk —1) [1 -

} fork>1.
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Fractional variable-order sum of convolution type (FVOS)

Let v :7Z — R4 U{0}. For a function x : Z — R, the fractional
variable-order sum of convolution type (FVOS) is defined as:

k
A™Ox(k) =Y " a"O(i)x(k - i).
i=0

Note that the FVOS can be interpreted as a discrete convolution:

A7"Ox(k) = (a* x) (k).
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Z-transform of FVOS

Given the convolution structure, the Z-transform of the fractional
sum can be written as:

2[8;"x] (2) = x(2)4(2), 3)

where X(z) := Z[x](z) and

Ay(z) = i(—l)"<_”i(")> z7

i=0

o If the order function is constant, i.e. v(k) = «, then equation
(3) simplifies to:

2@ - (727) x@.
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The Caputo-type fractional variable-order difference operator of
convolution type

Definition 2

Letv:7Z — (g — 1,q], where g € N;. The Caputo fractional
variable-order h-difference operator of convolution type (CFVOD)
with order function v(-) for a function x : Z — R is defined as

A Ox(k) = A=) Adx (k). (4)

v
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Remarks

@ For g=1:
AOx(kh) = A, A (k).
o If v(k) = q € Ny, then:
A0 x(k) = AIx(K).
@ For g = 1, the Z-transform representation is:
2 [a0x] (2) = ((z = 1X(2) - 2x(0)) A(z).,
where X(z) = Z[x](z),

Az) = ;(-1)’(1/(/)/_ 1) 0,
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@ Discrete-time systems with Caputo fractional variable-order
operator
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Discrete-time systems with the Caputo fractional variable-order
operator

Let us consider a discrete-time system with variable-order dynamics

of the form:

A"Ox(kh) = f(x(k)), k>1, (5)
with the initial condition x(0) = xo € R”, where v : Z — R, U {0}
is the order function, and x : Ng — R” is the state variable. Then

x(1) = x(0) + f(x(0))
k—1
x(k) = x(k = 1) + f(x(k — 1)) = > a" D71k — i) (x(i) = x(i — 1))

i=1

with the initial value x(0) = xp € R" given.
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Discrete-time systems
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Interpretation of final term

The final term in the second equation can be interpreted as a type
of input or actuator signal:

k—1
u(k) = = T k= i) (x(i) = x(i = 1))
i=1

We also assume v(0) = 1 in numerical simulations.
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Discrete-time systems
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Type of an order function

The order function can be given a piecewise-constant function over
specific time intervals:

vy, for k < kq,
vy, for ki < k < ko,
v(k) =9 (6)
vp, for kn_1 < k < kg,
1,  for k > k,,

where k; e Nand 0 < k1 < ko < ... < kp.
Then, the sum in A(z) is finite, and the convergency domain of the
series is the whole plane.
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© Conditions on stability for linear equations
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Stability conditions
oeo

Conditions for stability of linear discrete-time

Let us consider the system with a variable-order:

AYOx(k) = Ax(k), k> 1 (7)

Proposition 3 ( [11])

Let spec(A) ={\;j: i=1,...,k}, k<n.
(a) Ifforalli=1,...,k we have that

Ai€{(z—=1)A(2): |z| <1}, (8)

then system (7) is asymptotically stable.
(b) If there exists i € {1,..., k} such that

rief(z-1)A(2): |z[ > 1}, (9)

then system (7) is unstable.
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Stability conditions
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Scalar equations

Now we consider the situation for scalar equations. Let us consider
such equation with a variable-order of the following form:

A"Ox(k) = Ax(k), k> 1, (10)

with initial condition x(0) = xo € R, where v : Z — [0, 1] is an
order function, x : Ng — R is a state function and A € R.
Then, the condition for the asymptotic stability of equation (10).

Proposition 4 ( [11])

If
—2§: <”(i)i_ 1> <A<0, (11)

then equation (10) is asymptotically stable.
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@ Equations with one distributed delay
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Equations with a delay
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Equations with one distributed delay

We consider the following delay differential equation with one
distributed delay:

A"Ox(k) = f (x(k), i h(s)x(k — s)) , keN, (12)

where the delay kernel h: [0,00) — [0, 00) is a discrete probability
function.
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e-time systems Stability conditions Equations with a delay Sin Conclusions Ref
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The delay kernel is assumed to be bounded, satisfying

3 h(s) =1,

s=0

with the average time delay 7 = 22 sh(s) < oo.
The initial condition associated with the difference equation with
infinite delay (12) is of the following form:

x(k) =¥(k), te€(—o0,0], (13)

where v : (—o00,0] — R is a discrete function with the property
that there exists > 0 such that lim;_, . e**4(t) = 0. In other
words, the initial function v belongs to the Banach space
Co,u(R_,R) endowed with the norm:

[Ullso = sup e[y(t)].

te(—o0,0]
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Equations with a delay
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Linearization

Assume that equation (12) has an equilibrium point x*, that is,
f(x*,x*) = 0. Linearizing the system around this equilibrium point,
leads to a linear fractional difference equation with distributed
delay:

A"Ox(k) = ax(k) + 8 h(s)x(k —s) (14)
s=0

where o = ax £ (x*,x*) and B = BX2 £ (x*, x*).
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Equations with a delay
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Z-transform of the linearized equation

Taking Z-transform we receive
((z =1)A(z) — a = BH(2)) X(2) = x(0)A(z),  (15)

where E(z) = Z[e(-)](z) and H(z) = Z[H(-)](2).
Hence, we obtain the associated characteristic equation:

A(z) :=(z—1)A(z) —a— SH(z) = 0. (16)
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Equations with a delay
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We investigate the stability region of the equilibrium point x, in
terms of the characteristic parameters a and 3. To have more
flexibility of solutions we also consider the kernel on finite support.
Then, the following result is possible.

Proposition 5

(&)

Let >0, A:=>" (”("3_1), and 8 < 2A+ BH(-1), then for
i=0
p = —«, and

p € (B,2A+ BH(-1)) , (17)
then equation (14) is asymptotically stable.

A
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Simulations
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Example

Considering the expression: 2% 72, (”("3_1) + BH(—1) we have:
@ The order function v(/) is defined piecewise as:

0.8 for i€ [0,10],

0.85 for i€ [11,15],

v(i) =409 foric[16,20],

0.95 for i € [21,30],

(1.0 for i > 30
@ We compute an approximate sum up to N = 50:

50 .
A=Y V(1) =1\ 0.87585
- i ~~ .

i=0

© We evaluate H(—1) for the memory kernel:

2k—1

h(O):O, h(k)—ﬁ fork:l,,6
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We compute the final expression for selected values of §:

B=08: 2A+ BH(—1) ~ 2.0184
B=0.1: 2A+ BH(—1) ~ 1.7850
8 =0.01: 2A+ BH(—1) ~ 1.7550
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Logistic map with shift: p=2.5, beta=0

209

(1

08
07 - i 11 |

0.6

Figure 1: Solution x(k) to logistic equation with shift
x(k) = x(k — 1) + ax(k)(1 — x(k)) with a = 2.5, 5 = 0.
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With memory only: p=2.5, beta=0.1

10

x(k)

0.6

04

0 20 40 60 80 100 120 140

Figure 2: Solution x(k) to logistic equation with memory,
a=25=0.1.
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Simulations
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With variable-order only: p=2.5, beta=0
110
105
2
X 100
095
0.90
0 20 W 60 80 100 120 150

Figure 3: Solution x(k) to logistic equation with variable order only,
a=25,=0.
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Simulations
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With memory + variable-order: p=2.5, beta=0.1
110
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X 100
095
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Figure 4: Solution x(k) to logistic equation with memory and variable
order, « = 2.5, 5 =0.1.
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Comparison of x(k) Trajectories for Different Models (a =2.5, =0.1)

il ll

1.0

x(k)

0.6

—— Classic logistic
0.4 | — Memory only

—— Variable-order only

—— Memory + Variable-order

0 20 40 60 80 100 120 140

Figure 5: Solution x(k) -comparison, « = 2.5, 3 = 0.1.
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Conclusions

@ The work addresses the area of fractional discrete-time
systems with Caputo-type operators and infinite delay.

@ The proposed framework lays a foundation for further
investigation into the existence, uniqueness, and stability of
solutions in such systems.

o It offers valuable information on the correct initialization of
fractional differential equations with delay.

@ Future efforts will focus on the development of numerical
schemes for simulation and control design, as well as the
practical implementation of these models in real-world
applications.
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