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Oblivion function

Given k, l ∈ Z and an order function ν(·), we define oblivion
function as a discrete function of two variables, specified by its
values for any l ∈ Z. In particular, for k < 0 we set aν(i)(k) = 0,
and aν(i)(0) = 1, while for k > 0 we define

aν(i)(k) = (−1)k
ν(i) (ν(i)− 1) · · · (ν(i)− k + 1)

k!
. (1)
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Oblivion function

Formula (1) can also be expressed using the following recurrence
relation for k ∈ N:

aν(i)(0) = 1 ,

aν(i)(k) = aν(i)(k − 1)
[
1 − ν(i) + 1

k

]
for k ⩾ 1 .

(2)
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Fractional variable-order sum of convolution type (FVOS)

Definition 1

Let ν : Z → R+ ∪ {0}. For a function x : Z → R, the fractional
variable-order sum of convolution type (FVOS) is defined as:

∆−ν(·)x(k) :=
k∑

i=0

aν(i)(i)x(k − i) .

Note that the FVOS can be interpreted as a discrete convolution:

∆−ν(·)x(k) = (a ∗ x) (k) .
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Z-transform of FVOS

Given the convolution structure, the Z-transform of the fractional
sum can be written as:

Z
[
∆

−ν(·)
h x

]
(z) = X (z)A1(z) , (3)

where X (z) := Z[x ](z) and

A1(z) :=
∞∑
i=0

(−1)i
(
−ν(i)

i

)
z−i .

If the order function is constant, i.e. ν(k) ≡ α, then equation
(3) simplifies to:

Z[y ](z) =

(
z

z − 1

)α

X (z) .
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The Caputo-type fractional variable-order difference operator of
convolution type

Definition 2

Let ν : Z → (q − 1, q], where q ∈ N1. The Caputo fractional
variable-order h-difference operator of convolution type (CFVOD)
with order function ν(·) for a function x : Z → R is defined as

∆ν(·)x(k) = ∆−(q−ν(·))∆qx(k) . (4)
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Remarks

For q = 1:

∆
ν(·)
h x(kh) = ∆

−(1−ν(·))
h ∆hx(k) .

If ν(k) ≡ q ∈ N1, then:

∆ν(·)x(k) = ∆qx(k) .

For q = 1, the Z-transform representation is:

Z
[
∆ν(·)x

]
(z) = ((z − 1)X (z)− zx(0))A(z) ,

where X (z) = Z[x ](z),

A(z) :=
∞∑
i=0

(−1)i
(
ν(i)− 1

i

)
z−i .
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Discrete-time systems with the Caputo fractional variable-order
operator

Let us consider a discrete-time system with variable-order dynamics
of the form:

∆ν(·)x(kh) = f (x(k)) , k ≥ 1, (5)

with the initial condition x(0) = x0 ∈ Rn, where ν : Z → R+ ∪ {0}
is the order function, and x : N0 → Rn is the state variable. Then

x(1) = x(0) + f (x(0)) ,

x(k) = x(k − 1) + f (x(k − 1))−
k−1∑
i=1

aν(k−i)−1(k − i) (x(i)− x(i − 1))

k ≥ 2

with the initial value x(0) = x0 ∈ Rn given.
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Interpretation of final term

The final term in the second equation can be interpreted as a type
of input or actuator signal:

u(k) = −
k−1∑
i=1

aν(k−i)−1(k − i) (x(i)− x(i − 1))

We also assume ν(0) = 1 in numerical simulations.
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Type of an order function

The order function can be given a piecewise-constant function over
specific time intervals:

ν(k) =



ν1, for k < k1,
ν2, for k1 ≤ k < k2,
...
νn, for kn−1 ≤ k < kn,
1, for k ≥ kn,

(6)

where ki ∈ N and 0 ≤ k1 < k2 < . . . < kn.
Then, the sum in A(z) is finite, and the convergency domain of the
series is the whole plane.
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Conditions for stability of linear discrete-time

Let us consider the system with a variable-order:

∆ν(·)x(k) = Ax(k) , k ≥ 1 (7)

Proposition 3 ( [11])

Let spec(A) = {λi : i = 1, . . . , k}, k ≤ n.
(a) If for all i = 1, . . . , k we have that

λi ∈ {(z − 1)A (z) : |z | < 1} , (8)

then system (7) is asymptotically stable.
(b) If there exists i ∈ {1, . . . , k} such that

λi ∈ {(z − 1)A (z) : |z | > 1} , (9)

then system (7) is unstable.
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Scalar equations

Now we consider the situation for scalar equations. Let us consider
such equation with a variable-order of the following form:

∆ν(·)x(k) = λx(k) , k ≥ 1, (10)

with initial condition x(0) = x0 ∈ R, where ν : Z → [0, 1] is an
order function, x : N0 → R is a state function and λ ∈ R.
Then, the condition for the asymptotic stability of equation (10).

Proposition 4 ( [11])

If

− 2
∞∑
i=0

(
ν(i)− 1

i

)
< λ < 0 , (11)

then equation (10) is asymptotically stable.
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Equations with one distributed delay

We consider the following delay differential equation with one
distributed delay:

∆ν(·)x(k) = f

(
x(k),

∞∑
s=0

h(s)x(k − s)

)
, k ∈ N, (12)

where the delay kernel h : [0,∞) → [0,∞) is a discrete probability
function.
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The delay kernel is assumed to be bounded, satisfying
∞∑
s=0

h(s) = 1,

with the average time delay τ =
∑∞

s=0 sh(s) <∞.
The initial condition associated with the difference equation with
infinite delay (12) is of the following form:

x(k) = ψ(k), t ∈ (−∞, 0], (13)

where ψ : (−∞, 0] → R is a discrete function with the property
that there exists µ > 0 such that limt→−∞ eµtψ(t) = 0. In other
words, the initial function ψ belongs to the Banach space
C0,µ(R−,R) endowed with the norm:

∥ψ∥∞,µ = sup
t∈(−∞,0]

eµt |ψ(t)|.
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Linearization

Assume that equation (12) has an equilibrium point x⋆, that is,
f (x⋆, x⋆) = 0. Linearizing the system around this equilibrium point,
leads to a linear fractional difference equation with distributed
delay:

∆ν(·)x(k) = αx(k) + β

∞∑
s=0

h(s)x(k − s) (14)

where α = ∂f
∂x1

(x⋆, x⋆) and β = ∂f
∂x2

(x⋆, x⋆).
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Z-transform of the linearized equation

Taking Z-transform we receive

((z − 1)A(z)− α− βH(z))X (z) = zx(0)A(z) , (15)

where E (z) = Z[ϵ(·)](z) and H(z) = Z[H(·)](z).
Hence, we obtain the associated characteristic equation:

∆(z) := (z − 1)A(z)− α− βH(z) = 0. (16)
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We investigate the stability region of the equilibrium point x∗ in
terms of the characteristic parameters α and β. To have more
flexibility of solutions we also consider the kernel on finite support.
Then, the following result is possible.

Proposition 5

Let β ≥ 0, A :=
∞∑
i=0

(ν(i)−1
i

)
, and β < 2A+ βH(−1), then for

p := −α, and
p ∈ (β, 2A+ βH(−1)) , (17)

then equation (14) is asymptotically stable.
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Example

Considering the expression: 2
∑∞

i=0
(ν(i)−1

i

)
+ βH(−1) we have:

1 The order function ν(i) is defined piecewise as:

ν(i) =



0.8 for i ∈ [0, 10],
0.85 for i ∈ [11, 15],
0.9 for i ∈ [16, 20],
0.95 for i ∈ [21, 30],
1.0 for i > 30

2 We compute an approximate sum up to N = 50:

A :=
50∑
i=0

(
ν(i)− 1

i

)
≈ 0.87585

3 We evaluate H(−1) for the memory kernel:

h(0) = 0, h(k) =
2k−1

63
for k = 1, . . . , 6

H(−1) =
6∑

k=0

h(k)(−1)k =
1
63

6∑
k=1

2k−1(−1)k =
42
63

=
2
3
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We compute the final expression for selected values of β:

β = 0.8 : 2A+ βH(−1) ≈ 2.0184
β = 0.1 : 2A+ βH(−1) ≈ 1.7850
β = 0.01 : 2A+ βH(−1) ≈ 1.7550
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Figure 1: Solution x(k) to logistic equation with shift
x(k) = x(k − 1) + αx(k)(1 − x(k)) with α = 2.5, β = 0.
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Figure 2: Solution x(k) to logistic equation with memory,
α = 2.5, β = 0.1.
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Figure 3: Solution x(k) to logistic equation with variable order only,
α = 2.5, β = 0.
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Figure 4: Solution x(k) to logistic equation with memory and variable
order, α = 2.5, β = 0.1.

D. Mozyrska, M. Wyrwas PODE 2025, May 27-30, 2025, Cartagena, Spain

Fractional variable-order discrete-time equation with distributed delays 29 / 37



Preliminaries Discrete-time systems Stability conditions Equations with a delay Simulations Conclusions References

Figure 5: Solution x(k) -comparison, α = 2.5, β = 0.1.
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Conclusions

The work addresses the area of fractional discrete-time
systems with Caputo-type operators and infinite delay.
The proposed framework lays a foundation for further
investigation into the existence, uniqueness, and stability of
solutions in such systems.
It offers valuable information on the correct initialization of
fractional differential equations with delay.
Future efforts will focus on the development of numerical
schemes for simulation and control design, as well as the
practical implementation of these models in real-world
applications.
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