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Overview

The existence of a new type of attractors, which appear chaotic but are not, has been
observed in 2D discontinuous piecewise linear (PWL) homogeneous systems that
model economic dynamics (see Gardini et al. (2024, 2025c));

In a recent paper, Gardini et al. (2025a), we identified specific regions in the
parameter space associated with this type of attractor, called weird quasiperiodic
attractor (WQA), focusing on a 2D discontinuous PWL homogeneous map derived
from the well-known 2D border collision normal form Simpson (2014); Simpson and
Tuffley (2017)).

The goal of this work: show that WQAs can be observed in a broad class of 2D
PWL discontinuous maps, regardless of the type of borders of the partitions where
different functions are defined.

We also examine particular nongeneric cases where the attracting sets can be
analyzed via a one-dimensional (1D) restriction of the map or a first return map,
ultimately leading to a PWL circle map. These nongeneric cases have been recently
investigated in Gardini et al. (2025b), where we describe the dynamics of the related
class of 1D maps.

Furthermore, we show that WQAs may also occur in three-dimensional maps and,
more generally, may exist in n-dimensional (nD) maps.
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A 2D discontinuous PWL map with a unique fixed point

Consider a 2D discontinuous PWL map (often referred to as piecewise affine), in which the
functions are defined in two partitions and have the same real fixed point (x , y) = (−ξ,−η):

M :


ML :

{
x ′ = τLx + y + (τLξ + η − ξ)
y ′ = −δLx − (δLξ + η)

for x < h − ξ JL =

[
τL 1
−δL 0

]

MR :

{
x ′ = τRx + y + (τRξ + η − ξ)
y ′ = −δRx − (δRξ + η)

for x > h − ξ JR =

[
τR 1
−δR 0

] (1)

where the prime symbol ′ denotes the unit time advancement operator, and h ̸= 0.

The system (1) is topologically conjugate to the 2D discontinuous PWL homogeneous map:

T1 =


TL : X ′ = JLX for x < h, JL =

[
τL 1
−δL 0

]

TR : X ′ = JRX for x > h, JR =

[
τR 1
−δR 0

] (2)

Maps M and T1 have the same dynamics, as they are topologically conjugate.
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2D PWL maps with discontinuity set x = −1
Consider

T1 =


TL : X ′ = JLX for x < h, JL =

[
τL 1
−δL 0

]

TR : X ′ = JRX for x > h, JR =

[
τR 1
−δR 0

] (3)

Here, the discontinuity set is the vertical line x = h ̸= 0 and TR and TL have the same
fixed point (x , y) = (0, 0), denoted by O.

Remark (see Gardini et al. (2025a)): The peculiarity of this map is the emergence of a
WQA: a new type of attractor that does not include any periodic point, thus, it is neither
an attracting cycle nor a chaotic attractor.

Definition: A map is chaotic in a closed invariant set A if periodic points are dense in A
and there exists an aperiodic trajectory dense in A (so that there is transitivity).

Remark: A WQA appears as the closure of quasiperiodic trajectories, where the term
”weird” refers to the rather complex and often intricate geometric structure of these
attractors.

Remark: Note that if a 2D map has other invariant sets, where it is reducible to a 1D map
(e.g., a closed invariant curve, or a set consisting of a finite number of segments), then the
related attractors are not classified as weird (although these sets may coexist with a WQA).
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2D PWL maps with discontinuity set x = −1

T1 =


TL : X ′ = JLX for x < h, JL =

[
τL 1
−δL 0

]

TR : X ′ = JRX for x > h, JR =

[
τR 1
−δR 0

]
In Gardini et al. (2025a), h = −1 and we observed a WQA when O is:

attracting for the two functions;

attracting only for one function;

repelling for the functions (in Figure below, saddle for TL and unstable focus for TR).
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The class of 2D PWL maps

The characteristic property of the class of maps considered in this work is the same in any
dimension:

Definition (class of maps)

We consider, for n ≥ 1, the class of nD discontinuous PWL maps defined in a finite
number of partitions by linear functions with the same real fixed point.

Remark: According to the definition, we consider PWL maps with a unique fixed point
(hyperbolic or nonhyperbolic). Without loss of generality, we assume that the real fixed
point is O (PWL map becomes homogeneous).

Application in:

Economics, see Gardini et al. (2024) (WQA coexists with O always nonhyperbolic,
resulting in a segment of fixed points)

Engineering, see Kollar et al. (2004).

Remark: The discontinuity set can be a vertical line, a straight line y = mx + q with q ̸= 0,
multiple straight lines, or any curve(s) (as e.g., a circle which we use in some examples).
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WQA vs other attractors

Definition (1, WQA)

A WQA A of a map F :

Is a topological attractor: a closed invariant (F (A) = A) set with a dense trajectory
and an attracting neighborhood;

Does not include periodic points;

F on A is not homeomorphic to a 1D circle map.

Remark: WQAs are not SNA strange nonchaotic attractors (SNAs, see, e.g., Grebogi et al.
(1984); Feudel et al. (2006); Duan et al. (2024))

Remark: We start considering 2D maps in the class defined above where bounded
dynamics, not associated with the fixed point O, are either reducible to those of a PWL
circle map (related to 1D maps) or give rise to 2D WQA.

Remark: WQAs have properties similar to the quasiperiodic trajectories occurring in 1D
PWL circle maps. For this reason, they may be considered a generalization of such
dynamics to the 2D phase plane.
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A recap on 1D discontinuous PWL homogeneous maps

The case in Definition 1 for n = 1 corresponds to the class of maps considered in
Gardini et al. (2025b).

A 2D map within our definition can lead to a 1D first return map in some segment
that is a function corresponding to Definition 1 with n = 1.

In the case of with only one discontinuity point:

F =

{
FL : x ′ = sLx for x < h
FR : x ′ = sRx for x > h

h ̸= 0 (4)

where h ̸= 0 is a scaling factor. Set h > 0 (h < 0 is topologically conjugate).

When the slopes are positive, bounded asymptotic dynamics distinct from the fixed
point O, can occur only if FL(h) > h > FR(h), leading to sL > 1 > sR .

In this case, the map is a circle homeomorphism (FR ◦ FL(h) = sRsLh = FL ◦ FR(h)) in
the invariant absorbing interval I = [FR(h),FL(h)] = [sRh, sLh].

Its dynamics depend on the rotation number ρ, which is the same for any point of

interval I (see de Melo and van Strien (1991)).

If ρ is rational, then I is filled with periodic points (of the same period).
If ρ is irrational, then I is filled with quasiperiodic orbits dense in the
interval.
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A recap on 1D discontinuous PWL homogeneous maps

The generic case is an irrational rotation.

Rational rotation is associated with a set of zero Lebesgue measure in the (sR , sL)
parameter plane.

In the class of 1D PWL Lorenz maps (with one discontinuity point), the case of a
circle map denotes the transition from regular dynamics (in a gap map, where chaos
cannot occur) to chaotic dynamics (in an overlapping map), see Rand (1978); Berry
and Mestel (1991); Avrutin et al. (2019).

Theorem (1, from Gardini et al. (2025b))

Let G be a 1D discontinuous PWL homogeneous map as in Definition 1. Then:

(1) A hyperbolic cycle different from the fixed point O cannot exist (and thus, a chaotic
set cannot exist).

(2) The only possible bounded invariant sets of map G , different from those related to
the fixed point O (whether hyperbolic or nonhyperbolic), are those occurring in a
PWL circle map: Intervals densely filled with nonhyperbolic cycles or
quasiperiodic orbits. Coexistence is possible.

(3) Quasiperiodic orbits lead to (weak) sensitivity to initial conditions.

(4) The Lyapunov exponent is zero.
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Let us move to 2D discontinuous PWL
homogeneous maps
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2D discontinuous PWL homogeneous maps: Main results

Lemma (1, General Properties)

Let T be an 2D map as in Definition 1. Then:

(i) A hyperbolic cycle different from the fixed point O cannot exist (and thus, no chaotic
set).

(ii) Segments of straight lines through the fixed point O are mapped into segments of
straight lines through O.

(iii) Any composition of the linear functions defining map T preserves properties (i) and
(ii).

The same holds for a nD map as in Definition 1.
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2D discontinuous PWL homogeneous maps: Main results

Theorem (2, Dynamics on Invariant Segments)

Let T be a 2D map as in Definition 1. Let r be a straight line through the fixed point O
(y = mx), such that the first return of map T on a segment of r leads to a 1D map with a
finite number of discontinuity points. Then the related dynamics of map T in the phase
plane are either nonhyperbolic cycles (with eigenvalue 1) or quasiperiodic trajectories
densely filling some segments.

Remark: Thus, when an invariant segment exists, the first return map can be reduced to a
1D map satisfying Definition 1 for n = 1.

Remark: A suitable segment exists where the first return is the simplest one, with only one
discontinuity point, corresponding to the form of map F in (4) (see Gardini et al. (2025b)).

Remark: In case of only one discontinuity point and bounded dynamics, we should have as
in the Figure below:
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2D discontinuous PWL homogeneous maps: Main results

Theorem (3, Possible Bounded ω-limit Sets)

Let T be a 2D map as in Definition 1. Then:

(j) A bounded ω-limit set A different from the fixed point O and from local invariant sets

associated with O when it is nonhyperbolic, can only be one of the following kind:

(ja) it is a nonhyperbolic k-cycle, k ≥ 2, belonging to k segments not
intersecting any border, filled with k-periodic points (all cycles have the
same symbolic sequence);

(jb) it belongs to an invariant set on which the dynamics are reducible to a
discontinuous 1D map;

(jc) it is a weird quasiperiodic attractor (WQA).

(jj) When A does not consist in segments filled with cycles, then map T exhibits (weak)
sensitivity to initial conditions in A.

Remark: The attracting sets related to (ja) and (jb) are not structurally stable (not
persistent to parameter perturbation);

Remark: Escluding the fixed point, in the parameter space of the considered 2D maps, the
generic attractor is a WQA.

13 / 52



2D PWL homogeneous maps with the
same discontinuity set x = −1.
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2D PWL maps with discontinuity set x = −1
Consider the map:

T1 =


TL : X ′ = JLX for x < −1, JL =

[
τL 1
−δL 0

]

TR : X ′ = JRX for x > −1, JR =

[
τR 1
−δR 0

]
Properties:

The discontinuity line (critical line) is x = −1 and its images by the two linear
functions are

TL/R(x = −1) : y = δL/R (5)

Assuming that no eigenvalue is equal to zero (i.e. δL/R ̸= 0), each half-plane bounded
by x = −1 is mapped by the linear function TL/R into a half-plane bounded by
y = δL/R .

The relative positions of the half-planes determine the classification of the kind of
map.

For δL ̸= δR , the map may be uniquely invertible or noninvertible.

The strip bounded by y = δL/R may be a so-called region Z0, whose points have no
rank-1 preimage, or a region Z2, whose points have two different rank-1 preimages.
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2D PWL maps with discontinuity set x = −1

Panel (a), stability triangle for map TL.

Panel (b), O repelling focus for TL, O attracting focus (hyperbolic) for the map
coexisting with a WQA.

Panel (c), O is nonhyperbolic, a center (irrational rotation number) with invariant
region filled with ellipses (on which the trajectories are quasiperiodic, see Sushko and
Gardini (2008)) and bounded by an ellipse tangent to the discontinuity line and its
images. A WQA exists.

Panel (c), disconected basins of attraction as a portion of the invariant region is Z2.
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2D PWL maps with discontinuity set x = −1

Mechanism of appearance of the WQA in Panel (c):

Consider T = TL ◦ (TR)
4;

O is a (virtual) saddle of T , with eigenvalues λ1 ≃ 0.94 and λ2 ≃ 1.042;

For 0 < λ2 < 1, the invariant polygon attracts all the points of the phase plane.

For λ2 = 1, there exist five invariant segments (bounded on both sides), filled with
5-cycles, fixed points of map T .

For λ2 > 1, the trajectories on the eigenvector, say ru, become repelling.

Let P be the intersection point of eigenvector ru with the discontinuity line, and P−1

its rank-1 preimage (which lies within the R partition).

T maps segment P−1P into a segment PP1 (along the eigenvector), which belongs to
the L partition, where a different function is applied.

Then the iterates of this segment converge to a WQA.

We can say that the WQA is the ω-limit set of T n
1 (PP1), for n → ∞.
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PWL map T1 with δL = 0

T1 =


TL : X ′ = JLX for x < −1, JL =

[
τL 1
0 0

]

TR : X ′ = JRX for x > −1, JR =

[
τR 1
−δR 0

]
Properties:

TL has an eigenvalue equal to zero, region L is mapped into the corresponding image
of the discontinuity line, that is an eigenvector of the Jacobian matrix in that
partition;

Excluding O, bounded invariant set must necessarily have points on that critical line.

The dynamics of the 2D map can be investigated via a 1D first return map on that
line (critical line y = 0 in the specific case).
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PWL map T1 with δL = 0

Panel (a), 2D bifurcation diagram.

Panel (c), first return map in the segment of the attractor that lies along
the critical line y = 0, confirming that the dynamics of the attractor
(distinct from the fixed point O) are those of a PWL circle map;

Panel (b), attracting O that coexists with an attracting set (no WQA);
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PWL map T1 with δL = 0

Panel (a), O is a repelling focus.

Panel (a), stability triangle of function TL and that another attractor
may exist for a wide range of parameter values.

Panel (a), the black dot s.t. O attracting for TL with δL = 0.

Panel (b), the corresponding attracting set;

Panel (c), the first return map on a segment on the critical line y = 0
confirms that the dynamics of the attractor are those of a PWL circle
map (no WQA).
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PWL map T1 with δL = 0

Panel (a), the attracting set consists of several intervals along the
critical line y = 0;

Panel (b), the first return map can be defined on a single interval,
resulting in a PWL circle map (no WQA).
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PWL map T1 with δL = 0

The condition δL = 0 (which causes the left partition to be mapped onto the
critical line y = 0) does not necessarily imply that an attractor consists of a

finite number of segments.

Panel (a), δL = 0 and O is repelling.

In this case, we are not able to define a suitable first return map on the
critical line y = 0.

Panel (b), attracting set (appears to be a WQA) and O repelling focus.
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PWL map T1 with δL = 0

Panel (b), an invariant polygon (in red) including the WQA via a finite number of
images of the segment (in cyan) of the discontinuity set (see Mira et al. (1996)).

Panel (b), in red the stable set of O, W S(O). That half-line in the L partition is
mapped (in one iteration) into the fixed point O.

Panel (b), it appears that no point of the WQA belongs to the half-line W S(O).

Panel (c), a neighborhood of the origin without points of the WQA. Hence, there are
no points of the WQA close to the stable set of O (half-line in the L partition, shown
in red in panel (b)).
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PWL map T1 with δL = −0.01

It persists for δL = −0.01.

Panel (a), WQA, the points now fill the existing invariant polygon (although not
densely).

Panel (b), no points of the WQA in a suitable neighbohood of the fixed point O.
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PWL map T1 with δL = −0.01

Explanation of the existence of WQA:

The half-line stable set of O is now an eigenvector of TL with slope −0.4236
(corresponding to the eigenvalue λ = 0.0236) whose points tend toward the virtual
fixed point O.

This eigenvector of TL intersects the discontinuity line at a point P, inside the
invariant region. Point P also has a rank-1 preimage via the inverse T−1

L , denoted by
P−1, which belongs to the eigenvector within the left partition.

Consequently, TL maps segment P−1P into segment PP1 along the eigenvector.

However, segment PP1 belongs to the right partition, where the right function applies,
and in a finite number of iterations, the points are mapped again to the left partition.

From there, due to the shape of the related eigenvectors, they are mapped again to
the right partition, and so forth.

This iterative process leads to a WQA: ω-limit set of the iterations of segment PP1,
i.e., the ω-limit set of (T1)

n(PP1), for n → ∞.

25 / 52



PWL map T1 with δL = −0.01
Why the structure may appear quite weird:

Segment PP1 belongs to an invariant region, all of its iterates remain in that region
(divergence is not possible);

Linear homogeneous functions map segments belonging to straight lines through the
origin into segments belonging to straight lines through the origin (Lemma 1).

Thus, applying T1 to segment PP1, in a finite number of iterations segment
(T1)

k(PP1) crosses the discontinuity line, leading to 2 segments.

Each of these segments is then iterated similarly, each one (after a different number
of iterations) is crossing the discontinuity line, and thus a further division occurs,
leading to 22 segments.

This process continues indefinitely; the iterates of the original segment generate 2n

segments, for any n.

No point can be mapped into itself in a finite number of iterations since cycles do not
exist, and all the segments belonging to (T1)

n(PP1) are on straight lines through the
origin.

The ω-limit set of (T1)
n(PP1) for n → ∞ gives the attractor, a WQA.

This attractor belong to an invariant area, a polygon bounded by a finite number of
critical segments. These critical segments are the images of the segment on the
discontinuity line included in the area (shown in azure in panel (a)).
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Further 2D PWL maps

Same discontinuity set x = −1 but triangular map with two different linear functions
having a common eigenvector y = 0 associated with eigenvalues al and ar :

T2 =


TL : X ′ = JLX for x < h, JL =

[
al bl
0 dl

]

TR : X ′ = JRX for x > h, JR =

[
ar br
0 dr

] h = −1 (6)

Properties:

The restriction of map T2 on y = 0 leads to the 1D PWL circle map:

x ′ = alx for x < −1 and x ′ = arx for x > −1 (7)

Hence, on eigenvector y = 0, the dynamics are those occurring in map F in (4) with
discontinuity point x = −1.

Clearly, the global behavior in the phase plane depends on the other eigenvalues of
the two linear functions, and their associated eigenvectors (below two examples)
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Further 2D PWL maps

O is a virtual attracting node, with both eigenvalues positive;

O is a real saddle with eigenvalue λ1 = ar = 1.1, related to the eigenvector y = 0,
and eigenvalue λ2 = dr = −0.8, related to the eigenvector with slope s2 ≃ −1.267.

Panel (a) shows that the only attractor is a segment on eigenvector y = 0.

Panel (b) first return map on that segment is a PWL circle map
x ′ = alx = 0.8x for x < −1 and x ′ = arx = 1.1x for x > −1.

The basin of attraction depends on the global dynamics:

The boundary between the two basins (the basin of divergent trajectories and the
basin of the unique attractor) consists of segments of the stable set of the origin (the
eigenvector associated with λ2 = −0.8), and segments of the discontinuity line and

their preimages. 28 / 52



Further 2D PWL maps

We modify only parameter dr (the second eigenvalue in the right partition)

O is a virtual attracting node, with both eigenvalues positive;

O is a real repelling node with positive eigenvalues;

The restriction of the map to the eigenvector y = 0 remains unchanged (PWL circle
map).

The global dynamics now differs. Since the fixed point O is a repelling node,
eigenvector y = 0 is repelling.

The unstable eigenvector associated with eigenvalue dr = 1.3, with slope s2 ≃ 0.1333,
has the upper branch going to infinity, while the opposite branch intersects the
discontinuity line at a point P, so that a segment P−1P on that eigenvector in the
right partition is mapped into PP1 in the left partition. 29 / 52



Further 2D PWL maps

Same discontinuity set x = −1 and two triangular maps but with different eigenvectors!!!

Consider

T3 =


TL : X ′ = JLX for x < h, JL =

[
a1 b1
0 c1

]

TR : X ′ = JRX for x > h, JR =

[
a2 0
b2 c2

] h = −1 (8)

Peculiarity: The functions in the two partitions do not have a common eigenvector

JL has the eigenvector y = 0 associated with eigenvalue a1;

JR has the eigenvector x = 0 associated with eigenvalue c2.
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Further 2D PWL maps

Panel (a)-(c), O is a saddle for both partition;

Panels (a)-(b), WQAs (as well as divergen trajectories).

Panel (c), after the contact between the WQA and its basin boundary, we observe
only the ”ghost” of the former WQA.
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Further 2D PWL maps

Another map: Same discontinuity set x = −1, but no triangular map, proportional
eigenvalues but not the same eigenvectors!!!!

Consider

T4 =


TL : X ′ = JLX for x < h, JL =

[
ατR 1

−α2δR 0

]

TR : X ′ = JRX for x > h, JR =

[
τR 1
−δR 0

] h = −1 (9)

Properties: The linear maps in the two partitions have proportional eigenvalues, but not
the same eigenvectors.

Remark: This property allows for the existence of WQAs, as shown in the next slide. These
attractors may occur when O is unstable and the eigenvalues are either real or complex
conjugate.
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Further 2D PWL maps

Panel (a), 2D bifurcation diagram in the parameter plane (δR , τR), at α = 0.5;

Panel (a), the stability triangle of the real fixed point O is well evidenced, while the
red region denotes the existence of WQAs.

Panel (b), the 1D bifurcation diagram as a function of δR at fixed τR = −0.5, clearly
evidences the existence of WQAs, occurring both for δR < 1 and for δR > 1.

Remark: The dynamics in the phase plane at the four black dots marked in Figure in the
next slide.
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Further 2D PWL maps

Remark: O saddle and virtual attracting node.

Remark: O unstable focus and virtual attracting focus. WQA belongs to an invariant
polygon (determined by a finite number of images of a segment of the discontinuity line).
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2D PWL homogeneous maps with different
discontinuity sets
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Discontinuity sets I: straight lines
Consider (discontinuity line y = x + h, where h = 1, index R to the region below the line,
and L to the region above it): assign :

T5 =


TL : X ′ = JLX for y > x + h, JL =

[
τL 1
−δL 0

]

TR : X ′ = JRX for y < x + h, JR =

[
τR 1
−δR 0

] (10)

Panel (a), an example of a 2D bifurcation diagram in the parameter plane (τL, τR) at
fixed δR = 0.9 and δL = 0.8.
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Discontinuity sets I: straight lines

Panel (b), O is an attracting focus for both linear functions, and a WQA exists.

Panel (b), the boundary of the basin of attraction of the fixed point O consists of a
segment of the discontinuity line and a finite number of its preimages;

Panel (b), divergence does not occur; a bounded attracting set must exist.

Panel (b), basin of attraction of O has no point in the L partition, where the map has
a virtual attracting focus at the origin.

Panel (b), consequently, the points from the L partition are mapped to the R
partition, and rotate back to the L partition again, and so forth.
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Discontinuity sets I: straight lines

Panel (c), the origin is a saddle for both linear functions.

Panel (c), WQA results from the unstable eigenvector of the origin entering the left
partition.
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Discontinuity sets I: straight lines
Consider (two discontinuity lines, y = x + h and y = x − h, with h = 1, index R refers to
the partition between the two straight lines, and L outside of that):

T6 =


TL : X ′ = JLX for |y − x | > h, JL =

[
τL 1
−δL 0

]

TR : X ′ = JRX for |y − x | < h, JR =

[
τR 1
−δR 0

] (11)

Map is now symmetric with respect to the fixed point O. It follows that an invariant
set must be either symmetric with respect to O, or the symmetric one also exists.

Panel (a), 2D bifurcation diagram in the parameter plane (τL, τR) at fixed parameter
values δR = 0.9 and δL = 0.8.

Panel (b)-(c), WQAs.
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Discontinuity sets I: straight lines (Cont’s)
Consider (two discontinuity lines, y = x + h and y = x − h, with h = 1, index R refers to
the partition between the two straight lines, and L outside of that):

T6 =


TL : X ′ = JLX for |y − x | > h, JL =

[
τL 1
−δL 0

]

TR : X ′ = JRX for |y − x | < h, JR =

[
τR 1
−δR 0

] (12)

Panel (b), O attracting focus.

Panel (c), O is a saddle for TR and an attracting focus for TL.

Similar results are observed when the two straight lines representing the discontinuity
sets are vertical. Examples of such cases are shown in Gardini et al. (2024), Gardini
et al. (2025c).
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Discontinuity sets II: circles
Consider (discontinuity set: x2 + y 2 = 1, index R the partition inside the circle, while L
corresponds to the region outside):

T7 =


TL : X ′ = JLX for x2 + y 2 > 1, JL =

[
τL 1
−δL 0

]

TR : X ′ = JRX for x2 + y 2 < 1, JR =

[
τR 1
−δR 0

] (13)

O is a repelling focus.

Panel (b), O virtual stable focus.

Panel (c), O virtual stable node.
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Discontinuity sets II: circles (Cont’s)
Consider (discontinuity set: x2 + y 2 = 1, index R the partition inside the circle, while L
corresponds to the region outside):

T8 =


TL : X ′ = JLX for x2 + y 2 > 1, JL =

[
ατR 1

−α2δR 0

]

TR : X ′ = JRX for x2 + y 2 < 1, JR =

[
τR 1
−δR 0

] (14)

Panel (a), WQAs, O is a saddle (its eigenvectors are shown inside the circle), and is a
virtual attracting node.

Panel (b), WQAs, O is a repelling focus and a virtual attracting focus.

Existence of a WQA may be connected to the absence of divergent trajectories.
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2D PWL homogeneous map with O in two partitions
Consider (DR = R1 ∪ R2 is split in two regions, Jacobian matrices, in R1 and R2, differ in
terms of trace and determinant following the standard 2D normal form structure):

T9 =



TL : X ′ = JLX for X ∈ DL, JL =

[
τL 1
−δL 0

]

TR2 : X
′ = JR2X for X ∈ R2(x ≤ 0), JR2 =

[
τR2 1
−δR2 0

]

TR1 : X
′ = JR1X for ∈ R1(x ≥ 0), JR1 =

[
τR1 1
−δR1 0

]
(15)

O (repelling focus for TR1 and TR2, attracting (virtual) focus for TL) lies on the
border of two partitions, where the map is continuous, while an additional
discontinuity set is introduced.

The three cases differ in the definition of DL: In Panel (a), DL corresponds to region
x < −1; in Panel (b) to region y > x + 1; in Panel (c) to region x2 + y 2 > 1.
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2D PWL homogeneous map with O in two partitions

The parameters of map correspond to a rational rotation number leading to 5-cycles
and a region filled with 5-cycles coexists with a WQA.

The parameters of map correspond to an irrational rotation number, leading to a
suitable region filled with closed invariant curves on which the trajectories are
quasiperiodic, and there is coexistence with a WQA.
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nD PWL homogeneous maps.
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Generalization to Rn

WQA generalized to the class of n−dimensional maps for n > 2:

nD weird quasiperiodic attractor is an attractor A of an nD map T that is a closed
invariant set which does not contain any periodic point.

The dynamics of T on A cannot be studied by means of a first return map or by the
restriction to a set of lower dimension.

Conjecture

Let T be an nD map as given in Definition 1. Then:

(j) A bounded ω-limit set A different from the fixed point O and from related local

invariant sets of O when it is nonhyperbolic, can only be one of the following:

(ja) a nonhyperbolic k-cycle, k ≥ 2 (this occurs in m-dimensional sets, m < n,
non intersecting any border and filled with cycles of the same symbolic
sequence);

(jb) a finite number of m-dimensional sets, m < n, filled with quasiperiodic
orbits;

(jc) an invariant set, not structurally stable, on which the dynamics are
reducible to a discontinuous k-dimensional map, k < n;

(jd) an mD weird quasiperiodic attractor, where 2 ≤ m ≤ n.

(jj) When no cycles exist filling A densely, then A exhibits (weak) sensitivity to initial
conditions.
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Examples of 3D WQA
Let us consider a 3D example, with X = (x , y , z). The simplest 3D map defined in two
partitions reads as follows:

T =



TL : X ′ = JLX for x < −1, JL =

 τL 1 0
−σL 0 1
δL 0 0



TR : X ′ = JRX for x > −1, JR =

 τR 1 0
−σR 0 1
δR 0 0


(16)
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Further research

(a) Shape of WQAs and sensitivity to parameter perturbation.

(b) Existence of WQAs in a broader class of maps.

(c) Maximum Lyapunov exponent in discontinuous maps.

(d) Transition from regular to chaotic dynamics.
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Further research
Consider the attractors that are numerically obtained when one of the linear functions is
modified into an affine function. Consider the perturbed version of the map as follows:

T1a =


TL :

{
x ′ = τLx + y+µL

y ′ = −δLx
for x < h, JL =

[
τL 1
−δL 0

]

TR :

{
x ′ = τRx + y
y ′ = −δRx

for x > h, JR =

[
τR 1
−δR 0

] (17)

WQA for µL = 0, the qualitative shape of the attracting set remains unchanged for both
µL > 0 and µL < 0, when close to 0. However, (for µL ̸= 0) the attractors may be chaotic.
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