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possono essere ritenute responsabili per essi.

https://www.safina-vitality.it/

PODE 2025

1/41

https://www.safina-vitality.it/


Economic growth

Economic growth is a fundamental branch of Macroeconomics

Two pioneering works:

The optimal-growth model by Ramsey
The Solow-Swan model

Among later works, the model proposed by Böhm and Kaas is
a fundamental milestone
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The Böhm and Kaas model: a recap

t ∈ N
xt : the capital per-capita level at time t ∈ N
n ≥ 0: the labor force growth rate

δ ∈ [0, 1]: the capital depreciation rate

sw ∈ [0, 1]: the saving rate for workers

sr ∈ [0, 1]: the saving rate for stakeholders

f : R+ → R+: the production function

w : R+ → R: the wage rate

π : R+ → R: the profit share

xt+1 = F (xt) =
1

1 + n

[
(1− δ)xt + sw f (xt) + xt f

′(xt)(sr − sw )
]

3/41



The novelty

The novelty of the present work is the use of the κ-logistic
function, denoted by σκ, to describe the production function
in the Böhm and Kaas growth model.

Such a function is a generalization of the well-known
sigmoidal logistic function, frequently used in machine
learning and it is obtained from the κ-exponential function
(or, more concisely, expκ) introduced by Kaniadakis
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The expκ function - I

The expκ function:

It is a generalization of the exponential function

It depends on a parameter κ

When the parameter κ approaches zero, it tends to the exp
function
With κ large enough, it tends to infinity like a power function

Its popularity is due to the capability to take rare events into
account

Ordinary events follow an exponential law
Rare events are characterized by a Pareto (or power-tail) law
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The expκ function - II

The expκ function is a function mapping R onto R++ given by

expκ(x) =
(√

1 + κ2x2 + κx
) 1

κ

6/41



The logistic (or sigmoidal) function

σ : R → (0, 1), σ(x) =
1

1 + e−x

It maps R to the interval (0, 1), thus transforming a number
into a probability

For this reason, this function is widely used in the field of
machine learning

Its first derivative is always positive, meaning that larger
numbers correspond to probabilities closer to one and vice
versa
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The κ-logistic function

σκ : R → (0, 1), σκ(x) =
1

1 + expκ(−x)
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Some properties of the σκ function

a) lim
x→−∞

σκ(x) = 0.

b) lim
x→+∞

σκ(x) = 1.

c) σκ(x) ∈ (0, 1) ∀ x ∈ R.
d) σ−κ(x) = σκ(x) ∀ κ ∈ R.

e)
d

dx
σκ(x) =

1√
1 + κ2x2

σκ(x) (1− σκ(x)).

f) σκ is a strictly monotonic increasing function.

g) xf = 0 is an inflection point for σκ. Specifically, σκ is convex
for x < xf and concave for x > xf .

h) A line intersects the σκ function in at most three points.

i) σ
′
κ is an even function and its maximum is at the origin with a

value of 1
4 .
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Our production function

We propose a modified version of the κ-logistic function for the
production function such that:

is able to describe both strictly concave or convex-concave
technologies

takes into account rare events, as for instance, in economics,
natural disasters, such as earthquakes that reduce the supply
of capital, or epidemics or other external shocks influencing
the supply of intermediate inputs, human or physical capital.

considers economies at different development levels according
to an upper bound to the maximum production level
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The modified κ-logistic production function

f (xt) = M
σκ(xt − xc)− σκ(−xc)

1− σκ(−xc)

Higher values of M correspond to more developed economies

Positive values of xc are associated to non-strictly concave
production functions

Higher κ values are associated to situations in which rare
events are more likely to emerge.
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Some properties of f

The modified κ-logistic function has the following characteristics:

f is convex on (−∞, xc) and concave on (xc , +∞).

∀m, q ∈ R, the equation f (xt) = mxt + q has at most three
roots.
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The κ-logistic growth model

Taking into account the previous formulas, the map of our growth
model becomes:

xt+1 = F (xt),

with

F (xt) =
1

1 + n

{
(1− δ)xt + swM

σκ(xt − xc)− σκ(−xc)

1− σκ(−xc)
+

+
(sr − sw )M

1− σκ(−xc)

σκ(xt − xc) (1− σκ(xt − xc)) xt√
1 + κ2(xt − xc)2

}
.
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Equilibrium points - I

Consider the map xt+1 = F (xt), then:

a) x∗ = 0 is always an equilibrium point to the map.

b) If srMσκ(−xc) > (n + δ)
√
1 + κ2x2

c , there exists at least a x∗ > 0 such
that F (x∗) = x∗.

c) If sr = sw , there are at most two positive equilibrium points. Moreover,

under this condition:

c.1) If xc < 0 and srMσκ(−xc) > (n + δ)
√

1 + κ2x2c , then there
exists only one positive equilibrium point.

c.2) If xc < 0 and srMσκ(−xc) ≤ (n + δ)
√

1 + κ2x2c , there are no
positive equilibrium points.

d) There exists ϵ > 0 such that if |sr − sw | < ϵ, then there are at most two

positive equilibrium points. Moreover, under this condition:

d.1) If xc < 0 and srMσκ(−xc) > (n + δ)
√

1 + κ2x2c , then there
exists only one positive equilibrium point.

d.2) If xc < 0 and srMσκ(−xc) ≤ (n + δ)
√

1 + κ2x2c , then there
are no positive equilibrium points.

14/41



Equilibrium points - II

e) If sw = 0 and (n+δ)(1−σκ(−xc ))
Msr

≤ 1
4 , then there exists at most

two positive equilibrium points. In particular, if sw = 0,
xc > 0 and (n+δ)(1−σκ(−xc ))

Msr
= 1

4 , there exists exactly one
positive equilibrium point equal to x∗ = xc . Vice versa, if
sw = 0, xc ≤ 0 and (n+δ)(1−σκ(−xc ))

Msr
= 1

4 , there are no positive
equilibrium points. Moreover, if sw = 0 and
(n+δ)(1−σκ(−xc ))

Msr
> 1

4 , then there are no positive equilibrium
points.

f) There exists sw > 0 such that for all sw ∈ (0, sw ), the map
has at most two positive equilibrium points.
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Stability of the origin

Consider the map xt+1 = F (xt), with F with the equilibrium point
at the origin, then:

a) If srMσκ(−xc) < (n + δ)
√
1 + κ2x2c , then the origin is

asymptotically stable.

b) If srMσκ(−xc) > (n + δ)
√
1 + κ2x2c , then the origin is

unstable.

c) If srMσκ(−xc) = (n + δ)
√
1 + κ2x2c and xc ̸= 0 and

sw ̸= 2sr , then the origin is unstable.

d) If srMσκ(−xc) = (n + δ)
√
1 + κ2x2c , xc = 0, and

3sr − 2sw > 0 then the origin is asymptotically stable.

e) If srMσκ(−xc) = (n + δ)
√
1 + κ2x2c , xc = 0, and

3sr − 2sw < 0 then the origin is unstable.
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Stability of other (possible) equilibrium points

If srMσκ(−xc) > (n+ δ)
√
1 + κ2x2c , then there exists at least

a positive equilibrium point and the origin is unstable.

Let sr ≥ sw :

a) There exist xc and M = M (xc) > 0 such that for all xc > xc
and 0 < M < M the origin is the sole equilibrium point and it
is globally stable.

b) The positive equilibrium point arising in cases c.1) and d.1)
previously presented attracts all trajectories starting from
positive initial conditions.
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Computational results

With our computational experiments:

We aim to validate the previous theoretical findings
We attempt to uncover insights not possible through analytical
means
We introduce innovative tools to explore the model’s properties

Computational tests were conducted in Python, considering
various parameter combinations, which we refer to as scenarios

Each scenario corresponds to a particular shape of the map
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Scenarios

Scenario M xc κ sr sw δ n

1 1 -2 0.5 1 0.2 0.2 0.5

2 10 -2 0.5 1 0.2 0.2 0.5

3 1 2 0.5 1 0.2 0.2 0.5

4 25 4 0.8 0.2 0.2 0.2 0.5

5 25 4 0.8 0.25 0.2 0.2 0.5

6 2.5 5 0.8 1 0.2 0.2 0.5

7 10 2 0.5 1 0.2 0.2 0.5

8 3.00941946 4.76959597 0.70003226 1 0.2 0.2 0.5

9 6 6 0.8 1 0.2 0.2 0.5

10 10 10 0.2 0.7 0.1 0.2 0.5
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Scenario 1

The map is concave with just the origin as equilibrium point
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Scenario 2

The map is concave with the origin and a positive equilibrium point
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Scenario 3

The map is convex/concave, with the origin as the only equilibrium
point
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Scenario 4

The map is convex/concave, with the origin and a positive
equilibrium point that is also tangent to the bisector of the first
quadrant
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Scenario 5

The map is convex/concave, with the origin and two positive
equilibrium points
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Scenario 6

The map is convex/concave/convex, with the origin as the only
equilibrium point
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Scenario 7

The map is convex/concave/convex, with the origin and a positive
equilibrium point
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Scenario 8

The map is convex/concave/convex, with the origin and a positive
equilibrium point that is tangent to the bisector of the first
quadrant
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Scenario 9

The map is convex/concave/convex, with the origin and two
positive equilibrium points
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Scenario 10

The map is convex/concave/convex, with the origin and two
positive equilibrium points
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Chaotic analysis

The map in scenarios 9 and 10 is convex/concave/convex,
with the origin and two positive equilibrium points

We name xM the local maximum

We name xm the local minimum

We plot bifurcation diagrams starting from xM and xm
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M-bifurcation diagram for scenario 9

Starting from xM (left) and xm (right)
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M-bifurcation diagram for scenario 10

Starting from xM (left) and xm (right)
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xc-bifurcation diagram for scenario 10

Starting from xM (left) and xm (right)
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κ-bifurcation diagram for scenario 10

Starting from xM (left) and xm (right)
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M vs. xc diagram for scenario 10

Starting from xM (left) and xm (right)
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M vs. κ diagram for scenario 10

Starting from xM (left) and xm (right)
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xc vs. κ diagram for scenario 10

Starting from xM (left) and xm (right)
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3-D diagram for scenario 10 - I

Starting from xm
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3-D diagram for scenario 10 - II

Starting from xM
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3-D diagram for scenario 10 - III

A magnified view starting from xM
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Conclusions

We explored a growth model using the κ-logistic function,
which accounts for rare events, leading to a generalized
sigmoidal production function.

This model can handle both concave and non-concave
production functions, relevant for economies at various
development stages or encountering rare events.

Theoretical findings were confirmed by computational
experiments demonstrating the system’s behavior under
significant scenarios.

Future work will focus on deeper analysis of basins of
attraction and applying the κ-logistic function to
multi-dimensional growth models.
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