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Motivation

Environmental toxicity is becoming a global concern for the biological
population.

Toxicants, including pesticides, heavy metals, and industrial chemicals
disrupt the natural dynamics of ecosystems by interfering with species’
survival, reproduction, and behavior.

Predator-prey systems are highly vulnerable to such disruptions.

This project analyzes the case of predator evolution considering two
different toxicant effects.

(i) Sublethal effects, where toxicant impacts the fecundity of the
predator.

(ii) Lethal effects, where toxicant directly influences the predator’s
survival in a trait-dependent manner.
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The Main Model: Nonevolutionary Model

Model: A Discrete-time Predator-Prey Model (Ackleh et al., 2019)

n(t + 1) = ϕ(n(t)) (1− f (p(t))p(t)) n(t),

p(t + 1) = (s + b(n(t))n(t)f (p(t))) p(t),

where

ϕ(n) =
r0

1 +mn
, b(n) =

b0
1 + γn

, and f (p) =
c

1 + cp
,

n(t), p(t) are densities of prey & predator population at time t.

ϕ(n) is nonlinear growth rate of prey.

s is the survival probability (density independent) of the predator.

0 ≤ f (p) ≤ 1 is the probability that an individual prey is consumed
by an individual predator when p predators are present.
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Evolutioanry Model: Sublethal Effects

Model: Sublethal Effects (Ackleh et al., 2025)

n(t + 1) = ϕ(n(t))n(t)(1− f (p(t), v)p(t))|v=u,

p(t + 1) = s0p(t) + (1− ϵ(v))b(v)b̄(n(t))n(t)f (p(t), v)p(t)|v=u,

u(t + 1) = u(t) + ν∂v ln[R(n(t), p(t), v ]|v=u,

where

R(n, p, v) = s0 + (1− ϵ(v))b(v)b̄(n)nf (p, v) is the growth rate of a
predator individual with trait v .

b(v) = b0e
−wbv

2

, ϵ(v) = ϵ0e
−wϵv

2

, and f (p, v) = c(v)
1+c(v)p ; c(v) =

c0e
−wcv

2

are the trait-dependent exponential nonlinearities.

In this case, the density dependent term b̄(n) is normalized to be one
at zero density, where b̄(n) = 1

1+γn .
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Predator-Free Subsystem (P=0)

n(t + 1) = ϕ(n(t))n(t), (1a)

u(t + 1) = u(t) + νh(n, 0, u), (1b)

where

h(n, 0, u) =
2u

(
ϵ0 (wb + wc + wϵ)− (wb + wc) e

u2wϵ

)
(
eu2wϵ − ϵ0

)
+ s0

b0c0nb̄(n)
eu2(wb+wc+wϵ)

. (2)

From equation (1a), we have a positive equilibrium n̄ = ϕ−1(1) = r0−1
m ,

which exists when r0 > 1 and is globally asymptotically stable. Plugging
n̄ in equation (1b) yields

u(t + 1) = u(t) + νh(n̄, 0, u(t)). (3)
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Dynamics of the Predator-Free Subsystem

Lemma

Assume ν < 1
2(wb+wc )

and r0 > 1.

(a) There is a unique positive equilibrium u⋄ :=

√
ln

(
ϵ0(wb+wc+wϵ)

wb+wc

)
√
wϵ

for

(3) if and only if ϵ0 >
wb+wc

wb+wc+wϵ
.

(b) If ϵ0 <
wb+wc

wb+wc+wϵ
, then equation (3) has one equilibrium, u = 0,

which is globally asymptotically stable.

(c) Assume ϵ0 >
wb+wc

wb+wc+wϵ
. The equilibrium u = 0 is unstable and the

equilibrium u⋄ is globally asymptotically stable.
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Existence and Stability of Boundary Equilibria

Theorem

Assume ν is sufficiently small

(a) Boundary equilibria with zero trait value:

(i) The predator-free equilibrium (n̄, 0, 0), where n̄ := ϕ−1(1) = r0−1
m

exists if r0 > 1 and is globally asymptotically stable if ϵ0 <
wb+wc

wb+wc+wϵ

and s0 + b̄(n̄)n̄b0c0(1− ϵ0) < 1.
(ii) The equilibrium (n∗, p∗, 0) with n∗, p∗ > 0 exists if r0 > 1 and

s0 + (1− ϵ0)b̄(n̄)n̄b0c0 > 1. Moreover, (n∗, p∗, 0) is locally

asymptotically stable if ϵ0 <
wb+wc (1−p∗f (p∗,0))

wb+wϵ+wc (1−p∗f (p∗,0)) .

(b) Boundary equilibrium with positive trait value:

(i) The predator-free equilibrium (n̄, 0, u⋄) exists if r0 > 1 and
ϵ0 >

wb+wc
wb+wc+wϵ

and is locally asymptotically stable if

s0 + (1− ϵ(u⋄))b(u⋄)b̄(n̄)n̄c(u⋄) < 1.
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Persistence Analysis

Theorem

Assume ν < 1
2(wb+wc )

. Suppose that

ϵ0 >
wb + wc

wb + wc + wϵ
, r0 > 1, and s0+(1−ϵ(u⋄))b(u⋄)b̄(n̄)n̄c(u⋄) > 1.

Then sublethal model is uniformly persistent, i .e., there exists an ϵ > 0
such that

min
{
lim inf
t→∞

n(t), lim inf
t→∞

p(t), lim inf
t→∞

u(t)
}
> ϵ

for any initial condition with n(0), p(0), u(0) > 0.

Azmy S. Ackleh PODE 2025



Motivation
A Discrete-Time Predator-Prey Model

Evolutionary Predator-Prey Model with Sublethal Effects
Evolutionary Predator-Prey Model with Lethal Effects

Numerical Results
Conclusion

Interior Dynamics

Theorem

Let (n̂, p̂, û) be an interior equilibrium of the sublethal model.

If ∂
∂u

(
∂ lnR
∂v

∣∣∣∣
v=u

) ∣∣∣∣
(n,p,u)=(n̂,p̂,û)

< 0, then (n̂, p̂, û) is locally

asymptotically stable for sufficiently small ν.
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Evolutionary Model: Lethal Effects

Model: Lethal Effects (Ackleh et al., 2025)

n(t + 1) = ϕ(n(t))n(t)(1− f (p(t), v)p(t))|v=u,

p(t + 1) = s(v)(1− ϵ(v))p(t) + b(n(t))n(t)f (p(t), v)p(t)|v=u,

u(t + 1) = u(t) + ν∂v ln[R(n(t), p(t), v ]|v=u,

where

v is the predator’s individual trait, and u is the mean trait of predators.

R(n, p, v) = s(v)(1− ϵ(v)) + b(n)nf (p, v) is the growth rate of a
predator individual with trait v .

s(v) = s0e
−wsv

2

, ϵ(v) = ϵ0e
−wϵv

2

, and f (p, v) = c(v)
1+c(v)p ; c(v) =

c0e
−wcv

2

are the trait-dependent exponential nonlinearities.
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Dynamics of the Pure Trait Equation

u(t + 1) = u(t) + ν
[
s′(u)
s(u) − ϵ′(u)

1−ϵ(u)

]
(when n = 0)

Lemma

Denote ū :=

√
ln
(

(ws+wϵ)ϵ0
ws

)
wϵ

and assume ν < 1
2ws

.

(a) If ϵ0 < ws

(ws+wϵ)
, then the pure trait equation has a one equilibrium

u = 0, which is globally asymptotically stable.

(b) Assume ϵ0 >
ws

(ws+wϵ)
and ν is sufficiently small. Then the equilibrium

u = 0 is unstable and the equilibrium ū is globally asymptotically
stable for ν < ν∗.
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Boundary Equilibria with Zero Trait Value

Denote I (u) := s(u)(1− ϵ(u)) + b(n̄)n̄c(u) and ϵ̃0(n̄) :=
n̄b(n̄)c0wc+s0ws

(ws+wϵ)s0
.

Theorem

Assume ν is sufficiently small (ν < 1
2ws

).

(a) (Boundary equilibria with zero trait value)

(i) The extinction equilibrium (0, 0, 0) is globally asymptotically stable if
r0 < 1 and ϵ0 <

ws
wϵ+ws

.

(ii) The predator-free equilibrium (n̄, 0, 0), where n̄ := ϕ−1(1), exists if
r0 > 1 and is locally asymptotically stable if ϵ0 < min {ϵ̃0(n̄), 1} and
I (0) < 1. If, in addition, ϵ0 <

ws
ws+wϵ

and ws +wϵ ≥ wc , then (n̄, 0, 0)
is globally asymptotically stable.

(iii) A unique equilibrium of the form (n∗, p∗, 0) with n∗, p∗ > 0 exists if
r0 > 1 and I (0) > 1. Moreover, (n∗, p∗, 0) is locally asymptotically

stable if ϵ0 < min

{
wc

n∗b(n∗)c0
s0(1+p∗c0)

2 +ws

ws+wϵ
, 1

}
.
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Boundary Equilibria with Positive Trait Value

Denote C(u) :=

(
∂
∂u

(
∂ ln R
∂v

∣∣∣∣
v=u

)) ∣∣∣∣
(n̄,0,u)

and A := n̄b(n̄)c0wc (wc−(ws+wϵ))
s0wswϵ

.

Theorem (Continued)

(b) (Boundary equilibria with positive trait value)

(i) The extinction equilibrium (0, 0, ū) exists if ϵ0 >
ws

ws+wϵ
, and is globally

asymptotically stable if r0 < 1 .
(ii) A unique predator-free equilibrium of the form (n̄, 0, ũ) exists if r0 > 1

and ϵ0 > ϵ̃0(n̄), and is locally asymptotically stable if −2 < νC(ũ) < 0
and I (ũ) < 1.

(iii) A unique predator-free equilibrium of the form (n̄, 0, ũ) exists if r0 > 1,
ϵ0 = ϵ̃0(n̄) < 1, ws + wϵ < wc , and A > 1. Furthermore, it is locally
asymptotically stable if −2 < νC(ũ) < 0 and I (ũ) < 1.

(iv) If ϵ0 < ϵ̃0(n̄) and r0 > 1. Then two predator-free equilibria of the
form (n̄, 0, ũ1) and (n̄, 0, ũ2) exist with ũ1 < ũ2, where the equilibrium
(n̄, 0, ũ1) is unstable and the equilibrium (n̄, 0, ũ2) is locally asymptot-
ically stable if −2 < νC(ũ2) < 0 and I (ũ2) < 1.
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Persistence Analysis

Theorem

Assume ν < 1
2ws

and r0 > 1. Suppose that

ϵ0 > ϵ̃0(n̄) and s(ũ) (1− ϵ(ũ)) + b(n̄)n̄c(ũ) > 1.

Then the lethal model is uniformly persistent, i .e., there exists an ϵ > 0
such that

min{lim inf
t→∞

n(t), lim inf
t→∞

p(t), lim inf
t→∞

u(t)} > ϵ

for any initial condition with n(0), p(0), u(0) > 0.

Theorem

Suppose the assumptions of the above theorem hold. Then there exists
at least one interior equilibrium (n̂, p̂, û) of the lethal model. If
∂
∂u

(
∂ lnR
∂v |v=u

)
|(n,p,u)=(n̂,p̂,û) < 0, then there exists a positive number δ

such that (n̂, p̂, û) is locally asymptotically stable for ν < δ.
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Bistablity of the Lethal Model
Comparison Between Lethal and Sublethal Model

Bistability of the Predator-Free Trait Equation

Figure: The left diagram shows the existence of two positive equilibria (u =
0.3905 and u = 0.6759) of a trait equation, while the right diagram exhibits the
local stability of the trivial (u = 0) equilibrium and the equilibrium has a higher
positive value (u = 0.6759).
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Bistablity of the Lethal Model
Comparison Between Lethal and Sublethal Model

Bistability Depending on the Initial Conditions

Figure: Both figures exhibit the local stability of the equilibria u=0 and u=0.6759
under both low and high initial trait conditions, but at different toxicant levels:
lower initial conditions ensure the stability of the positive equilibrium in the higher
toxic environment, while the scenario may reverse for the higher initial conditions
of the initial trait conditons.
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Bistablity of the Lethal Model
Comparison Between Lethal and Sublethal Model

Impact of Bistability on the Lethal Model

Figure: The time series solutions of the lethal model are presented for two dif-
ferent trait initial conditions (a) u(0) = 0.3 and (b) u(0) = 0.5.

Notice that here we observe that predator survival is dependent on the initial trait
value, with smaller initial trait values resulting in predator survival, but larger
initial values resulting in predator extinction despite the evolution of toxicant
resistance.
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Lethal and Sublethal Effects Comparison

Here we choose the predator reproduction b0 = 3 and s0 = 0.9.

Figure: Shown are the bifurcation diagrams for the equilibria of the prey and
predator, both with and without evolution, and the mean trait for the bifurcation
parameter 0 ≤ ϵ0 ≤ 1 when toxicant effects are lethal (left) or sublethal (right).
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Bistablity of the Lethal Model
Comparison Between Lethal and Sublethal Model

Lethal and Sublethal Effects Comparison (continued)

Here we choose b0 = 5 and s0 = 0.9.

Figure: Shown are the bifurcation diagrams for the equilibria of the prey and
predator, both with and without evolution, and the mean trait for the bifurcation
parameter 0 ≤ ϵ0 ≤ 1 when toxicant effects are lethal (left) or sublethal (right).

Azmy S. Ackleh PODE 2025



Motivation
A Discrete-Time Predator-Prey Model

Evolutionary Predator-Prey Model with Sublethal Effects
Evolutionary Predator-Prey Model with Lethal Effects

Numerical Results
Conclusion

Bistablity of the Lethal Model
Comparison Between Lethal and Sublethal Model

Lethal and Sublethal Effects Comparison (continued)

Here we choose b0 = 5and s0 = 0.5.

Figure: Shown are the bifurcation diagrams for the equilibria of the prey and
predator, both with and without evolution, and the mean trait for the bifurcation
parameter 0 ≤ ϵ0 ≤ 1 when toxicant effects are lethal (left) or sublethal (right).
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Key Outcomes

In the lethal effects scenario, toxicant resistance can evolve even below the
threshold level, leading to bistability with two predator-free equilibria, u = 0
and a positive value, both locally stable. Predator survival then depends
on the initial trait: low values lead to survival, while high values result in
extinction despite resistance evolution.

In the non-evolutionary scenario, when fecundity is lower, the predator goes
extinct at a lower toxicant level in the lethal case compared to the sublethal
case. In contrast, when fecundity is higher, this scenario is reversed. Thus,
lethal effects are greater when fecundity is low, but sublethal effects become
greater when fecundity is high.

Compared with lethal and sublethal models, the toxicant threshold level
is the same for all scenarios from which the predator begins to evolve in
response to toxicants.

When predator survival is higher, sublethal effects produce higher predator
densities. However, the scenario is reversed when predator survival is low.

Finally, in all scenarios, evolution produces higher predator densities in the
toxic environment.
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Future Work

Frequency-dependent evolution: Frequency-dependent evolution
occurs when an individual’s fitness is impacted by the traits of
others in the population.

Evolution in structured predator-prey models: The impact of
evolution in either the predator or prey when the prey is structured,
or the predator is structured.
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Thanks for your attention!
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