
Topological sequence entropy and topological dynamics
of tree maps

Jose S. Canovas and Aymen Daghar
PODE25

Department of Applied Mathematics and Statistics, Technical University of Cartagena.
University of Carthage, Higher Institute of Management Bizerte and Faculty of Science of

Bizerte, (UR17ES21), “Dynamical systems and their applications”.

28-30/05/2025

(UC – FSB) Topological sequence entropy and topological dynamics of tree maps28-30/05/2025 1 / 26



Plan

1 Definitions and preliminary results
Topological dynamics
Topological entropy and topological sequence entropy
Tree and Dendrite

2 Main result

3 counter example in the case of dendrite

(UC – FSB) Topological sequence entropy and topological dynamics of tree maps28-30/05/2025 2 / 26



Section 1

Definitions and preliminary
results
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Topological dynamics

Definition and notations
A topological dynamical system is a pair (X , f ), where X is a

compact metric space and f is a continuous map from X to itself.

For x ∈ X, we called orbit of x under f the set
Orbf (x) =: {f n(x), n ∈ Z+} where f nthe n-th iterate of f ; and f 0 is
the identity of X.
A non empty subset A of X is called invariant (resp. strongly
invariant) if f (A) ⊂ A (resp. f (A) = A).
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Limit and minimal sets

Definition ω−limit set
• The ω−limit set of the point x is the subset :
ωf (x) :=

⋂
n∈N{f k(x), k ≥ n}, equivalently

ωf (x) = {y ∈ X : ∃(ni)i ⊂ N, ni → +∞, limi→+∞ d(f ni (x), y) = 0}
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The sets of non-wandering points and periodic points

A point x in X is called
fixed if f (x) = x ,

periodic if f n(x) = x for some n ∈ N,
wandering for if there exists some neighborhood U, of x such that
f −n(U) ∩ U = ∅, for every n ∈ N. Otherwise, the point x is said to be
non-wandering.

• We denote by P(f ) and Ω(f ), the sets of periodic points, almost
periodic points, recurrent points and the non-wandering points of f . We
denote by Λ(f ) :=

⋃
x∈X ωf (x).
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chain recurrent points

For ϵ > 0, an ϵ-chain from x to y under f is a finite sequence
(xi)0≤i≤n such that x0 = x and xn = y and d(f (xi−1), xi) < ϵ for any
1 ≤ i ≤ n. We denote by CR(x , f ) the set of points of X for which for
any ϵ > 0 there exist an ϵ-chain under f from x to y .
A point x ∈ X is chain recurrent if x ∈ CR(x , f ). We denote by
CR(f ) the set of chain recurrent points.
• We have the following inclusion, which are strict in general :

P(f ) ⊂ Λ(f ) ⊂ Ω(f ) ⊂ CR(f )
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Example

• Let f be the identity map of [0, 1] and (xn)n≥0 a sequence of [−1, 1]
such that lim

n→+∞
xn = 0, and for some arrangement of the index of (xn)n≥0

(yn =
n∑

k=0
xn)n≥0 is a dense sequence of [0, 1].

• For any ϵ > 0 and for n large enough, we can find an ϵ-chain from 0 to 1
under f .

Let n ∈ N so that |yk+1 − yk | < ϵ, for any k ≥ n and |yn| < ϵ, since
(yk)k≥0 is a dense sequence of [0, 1], we can find m > n so that
|ym − 1| ≤ ϵ.
The set {0, yn, yn+1, . . . ym, 1} ϵ-chain from 0 to 1 under f .
Although the dynamics of f is trivial, we can find (In the same manner
as 0 and 1) an ϵ-chain from x to y under f , for any x , y ∈ [0, 1].
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Topological Sequence Entropy
• For two open covers U , V = {Vi , i ∈ J}, the common refinement is
U ∨ V = {Ui ∩ Vj | i ∈ I, j ∈ J}. We denote by N(U) the minimum
number of open sets in U that cover X .

• Let A = (ai)i≥0 be an increasing sequence of integers and U an open
cover of X . The sequence topological entropy of T with respect to A and
U is defined as :

hA(T , U) = lim
n→∞

1
n ln

N

 ∨
0≤i≤n−1

T −ai (U)

 .

• The topological sequence entropy of T with respect to A is :

hA(T ) = sup{hA(T , U) | U open cover of X}.

• The topological sequence entropy of T is :

h∞(T ) = sup{hA(T ) | A increasing sequence of positive integers}.
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Topological entropy and topological sequence entropy

• Note that if A is the sequence of non-negative integers, then
hA(T ) = h(T ), where h(T ) is the the topological entropy of T .

• A dynamical system is said to be null whenever h∞(T ) = 0.

• Observe that h(T ) ≤ h∞(T ) and this equality can be strict in general.
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Tree and Dendrite

A continuum is a compact connected metric space.
An arc I (resp. a circle) is any space homeomorphic to the compact
interval [0, 1] (resp. to the unit circle S1 = {z ∈ C : |z | = 1}).
A tree T is a continuum which can be written as the union of finitely
many arcs such that any two arcs are either disjoint or intersect only
in one or both of their endpoints. Moreover T does not contains any
circle.
A dendrite is a locally connected continuum which contains no simple
closed curve.

• Note that each arc is a tree and any tree is a dendrite.
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Figure – Example of a tree and a dendrite
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Section 2

Main result
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Main result

Theorem 1, J.S.Canovas (2007)
Let X be an arc and let f : X → X be continuous with zero topological
entropy. Then

h∞(f |ω(f )) = h∞(f |Ω(f )) = h∞(f |CR(f )) = 0.

We generalise Theorem 1 for the case of tree and we have :

Theorem 1, J.S.Canovas and D.Aymen (2023)
Let X be a tree and let f : X → X be continuous with zero topological
entropy. Then

h∞(f |ω(f )) = h∞(f |Ω(f )) = h∞(f |CR(f )) = 0.

• The proof is based on the following 4 results :
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Main result

Let f be a tree map with zero topological entropy, we have the following :
For any x ∈ CR(f ) \ P(f ) the set ωf (x) is infinite. (T. Sun, M. Xie
and J. Zhao (2006))

For any x ∈ X , we can find a decreasing sequence (with respect to
the inclusion) of periodic arcs (Jn)n≥0 with period mn such that
ωf (x) ⊂ Jn ∪ f (Jn) ∪ ....f mn−1(Jn). (A.Ghassen (2015) )
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Main result

Let f : X → X be a tree map such that h(f ) = 0.
Let x ∈ CR(f ) \ P(f ) and let J be a periodic arc (with period m)
such that ωf (x) ⊂ J ∪ f (J) ∪ ....f m(J). Then, the following
statements hold :

x ∈ J ∪ f (J) ∪ ....f m(J).
For any n ≥ 0, f −n(x) ∩ CR(f ) ⊂ J ∪ f (J) ∪ ....f m(J).

Let f : X → X be a tree map and let g = f|CR(f ) be the restriction of
f on CR(f ).

h(f ) = 0 ⇔ (CR(f ), g) is equicontinuous at any periodic point.
• A dynamical system (X , f )) is said to be equicontinuous at a point
x ∈ X if the set of maps F = {f n, n ≥ 0} is equicontinuous at x .
• With this 4 results we will prove The main Theorem.
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Section 3

Section 3

counter example in the case
of dendrite
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counter example in the case of dendrite

To conclude, we will give an example of a map f on a dendrite X such
that h(f ) = 0, Ω(f ) = P(f ) and h∞(f |Ω(f )) > 0( in particular
h∞(f |CR(f )) > 0). The idea is to consider a pointwise periodic
homeomorphism g on a given compact set Y such that h∞(g) > 0 and
then extend the homeomorphism to a continuous self-map on the whole
dendrite.
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counter example in the case of dendrite

Let I = [0, 1] × {0}. For n ≥ 1, let

Yn :=
{(

xi ,n,
1
n

)
,

(
xi ,n,

−1
n

)
: i ∈ {1, 2, ..., 2n−1}

}
,

where xi ,n := 2i−1
2n for n ≥ 1 and 1 ≤ i ≤ 2n−1. Observe that

lim
n→+∞

Yn = I

and d(xi ,n, xi+1,n) ≤ 1
2n−1 for 1 ≤ i ≤ 2n−1 − 1.
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counter example in the case of dendrite, the system (Y , g)

Let Y := I ∪
(⋃

n≥1 Yn
)
, which clearly is a compact subset of R2. We

define g : Y → Y by
(i) g(y) = y , if y ∈ I.
(ii) For any n ≥ 1 the subset Yn is a periodic orbit such that :

g((xi,n, 1
n )) = (xi+1,n, 1

n ) if 1 ≤ i ≤ 2n−1 − 1.
g((x2n−1,n, 1

n )) = (x2n−1,n, −1
n ).

g((xi,n, −1
n )) = (xi−1,n, −1

n ) if 2 ≤ i ≤ 2n−1.
g((x1,n, −1

n )) = (x1,n, 1
n ).

• g is a pointwise periodic homeomorphism (i.e P(f ) = Y )
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The system (Y , g)
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counter example in the case of dendrite, the system (Y , g)

• For any x , y ∈ Y = P(f ), with x ̸= y , we have d(gn(x), gn(y)) ≥ ϵ > 0
(since x , y are distinct periodic points), then the pair (x , y) is distal,
Therefore the system (Y , g) is distal.

• For any x ∈ I ⊂ Fix(g), we can find an ∈ Yn and some mn ∈ N so that
(an)n≥0 converges to x and d(f mn(x), f mn(an)) = d(x , f mn(an)) ≥ η for
some η > 0 hence the system (Y , g) is not equicontinuous.

(UC – FSB) Topological sequence entropy and topological dynamics of tree maps28-30/05/2025 22 / 26



counter example in the case of dendrite, the system (Y , g)

• We conclude that (Y , g) is a distal none equicontinuous system.
By (J. Qiu and J. Zhao (2020)), h∞(g) > 0.

• We will extend the space Y into a dendrite X and g into a map
f : X → X .
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The extended dendrite X
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Thank you for your time and
your attention
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