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Welcome

• Welcome to Progress on Difference Equations 2025, PODE25, which will take place
from 28th to 30th of May, in Cartagena, Spain. We hope that you find the conference
interesting from scientific and social point of view.

• This is the 14th International Conference which follows those held each year since 2007
on the same topics. After 2017, the workshop PODE alternates each year with the
European Conference on Iteration Theory - ECIT and therefore is being held every
two years.

• The conference in Cartagena aims to continue the tradition of previous PODE con-
ferences. The first PODE conference took place at Laufen (Germany, 2007), and was
followed by the meetings of Laufen (Germany, 2008), Bedlewo (Poland, 2009), Xanthi
(Greece, 2010), Dublin (Ireland, 2011), Richmond (Virginia, USA, 2012), Bialystok
(Poland, 2013), Izmir (Turkey, 2014), Covilhã (Portugal, 2015), Riga (Latvia, 2016),
Urbino (Italy, 2017), Bragança (Portugal, 2019) and Milan (Italy, 2023).

• PODE 2025 is held under the auspices of the International Society for Difference Equa-
tions, the Group of Dynamical Systems of Murcia, the Department of Mathematics of
the Universidad de Murcia and the Department of Applied Mathematics and Statistics
of Universidad Politécnica de Cartagena.

• Cartagena is a small city located in the southeast of Spain, with an excellent natural
harbour and a history of more than 2000 years. The conference attendees can enjoy not
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only the interesting scientific program but also the warm weather, the typical Spanish
gastronomy and the nice cultural life of the city.

• The conference aims to be a forum for young and senior researchers to share their
work and discuss the latest developments in the areas of difference equations, discrete
dynamical systems, functional equations and their applications.

• The activities of the Conference will take place at Salón de Grados, which is located
at Escuela Técnica Superior de Ingeníıa Industrial, at Technical University of Carta-
gena. In Figures 1 and 2 you can see how to connect Hotels Carlos III and Alfonso
XIII with the Conference site. The hotels are very close, so all the paths included in
the maps are valid.

Figure 1: Map of Cartagena. Path from Hotel Carlos III and ETSII building, which is the
rectangular one with two inner squares.
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Figure 2: Map of Cartagena. Path from Hotel Alfonso XIII and ETSII building, which is
the rectangular one with two inner squares.
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Social activities

• During the Conference, we are planning to organise two excursions on Thursday. The
first one will be devoted to visiting the Roman Theatre Museum. We will visit the
museum and go into the Roman Theatre. In doing so, we will follow a path where all
the ancient cultures of Cartagena, Carthago, Roman, Bizantine, Muslim, and Christian
are met. The second excursion is planned to visit Cartagena Port landscapes, including
a small trip on a tourist ship. It is highly recommended to use a small cap during the
ship excursion. If you do not wish to take such an excursion, you can wait for us to
have something in the ”chiringuitos” located in the port.

• The traditional conference dinner will be at Hotel Los Habaneros, a well-known restau-
rant in the city centre of Cartagena (see Figure 3), and close to the conference building.
We hope you enjoy the dinner, which will be on Thursday at 20:30.
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Figure 3: Map of Cartagena. Path from Hotels Carlos III and Los Habaneros. In front of
Hotel Los Habaneros you can see the main building of the universitity.
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Organized by

• Department of Applied Mathematics and Statistics. Technical University of Cartagena.

• Department of Mathemtics. Murcia University.

• International Society of Difference Equations.

Local Sponsors

• Fundación Séneca.

• Dirección General de Universidades e Investigación de la Consejeŕıa de Medio Ambi-
ente, Universidades, Investigación y Mar Menor.

• Escuela Técnica Superior de Ingerńıa Industrial.

• Universidad Politécnica de Cartagena.

Organizing Committee

• Jose S. Cánovas, Department of Applied Mathematics and Statitistics, Technical Uni-
versity of Cartagena.

• José Ginés Esṕın, Department of Mathematics, Murcia University.

• Vı́ctor Jiménez López, Department of Mathematics, Murcia University.

• Antonio Linero Bas, Department of Mathematics, Murcia University.

• Maŕıa Muñoz Guillermo, Department of Applied Mathematics and Statitistics, Tech-
nical University of Cartagena.

• Daniel Nieves Roldán, Department of Mathematics, Murcia University.

• Maŕıa del Carmen Ruiz Abellón, Department of Applied Mathematics and Statitistics,
Technical University of Cartagena.

• Gabriel Soler López, Department of Applied Mathematics and Statitistics, Technical
University of Cartagena.
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Scientific Committee

• Saber Elaydi, Trinity University, USA.

• Laura Gardini, University of Urbino Carlo Bo, Italy.

• Armengol Gasull, Universitat Autónoma de Barcelona, Spain.

• René Lozi, Université Côte d’Azur, France.

• Adina Luminita Sasu, West University of Timisoara, Romania.

• Lubomir Snoha, Matej Bel University, Slovakia.

• Jose S. Cánovas, Technical University of Cartagena, Spain.

Invited Speakers

• Saber Elaydi, Trinity University, USA.

• David Juher, Universitat de Girona, Spain.

• Senada Kalabusic, University of Sarajevo, Bosnia and Herzegovina.

• Vı́ctor Mañosa, Universitat Politécnica de Catalunya, Spain.

• Davide Radi, Universit Cattolica del Sacro Cuore, Italy.

12



Timetable

13





Progress on Difference Equations 2025

Progress on Difference Equations 2025
Scientific Program

Wednesday, 28 of May

9:00 Opening Ceremony

9:15
Saber Elaydi
Evolutionary Discrete-Time Models in Ecology and Epidemiology
Chair: Laura Gardini

10:00 Coffee break
10:30 Contributed talks. Session 1.
13:00 Lunch Time

16:15

Senada Kalabusic
Difference equations in mathematical modeling: Exploring
the Rosenzweig-MacArthur predator-prey model (stability, bifurcations, permanence)
Chair: Saber Elaydi

17:00 Coffee break
17:30 Contributed talks. Session 2.

Contributed talks. Session 1. Chair: Francisco Balibrea

10:30
Azmy S. Ackleh
How predator evolution to lethal or sublethal toxicant effects alters
the dynamics of a discrete-time predator-prey system

11:00
Fangfang Liao
Non-constant periodic solutions of the Ricker model with periodic parameters

11:30
Juan Segura
Discrete population models and dispersal: Part I

12:00
Daniel Franco
Discrete population models and dispersal: Part II

12:30
Naida Mujić
Codimension-one and -two bifurcations and stability of certain second order
rational difference equation with arbitrary parameters
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Contributed talks. Session 2. Chair: Iryna Sushko

17:30
Tatyana Perevalova
Noise-induced de-synchronization in dynamic stochastic consumption model

18:00
Mauro Maria Baldi
Exploring the κ-logistic Growth Model: Dynamics and Insights

18:30
Mourad Azioune / René Lozi
Chaos Control and Mixed Mode Oscillations in a Bertrand Duopoly
Model with Quadratic Costs

19:00
Jochen Jungeilges
Sensitivity analysis for attractors of a stochastic piecewise
ARMA(2,2)-type asset-price model

19:30
Houssem Eddine Rezgui
The dynamic of q-deformed logistic maps
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Scientific Program

Thursday 29 of May

9:15
David Juher / Llúıs Alsedá
Volume entropy of surface groups: a dynamical approach
Chair: Antonio Linero

10:00 Coffee break
10:30 Contributed talks. Session 3.
13:00 Lunch Time
16:00 Excursion. Visit to Roman Theatre Musseum and ship
20:30 Conference Dinner

Contributed talks. Session 3. Chair: Senada Kalabusic

10:30
David Rojas
Structure of zero entropy patterns of trees

11:00
Jakub Hesoun
Connecting stationary fronts of Nagumo lattice differential
equation with a functional equation

11:30
Ewa Girejko
On numerical analysis of car-following models with discrete fractional operators

12:00
Dorota Mozyrska
Logistic fractional variable order discrete-time equation with distributed delays

12:30
Amira Mchaalia
On totally periodic ω-limit sets for monotone maps on regular curves
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Scientific Program

Friday 30 of May

9:15
Vı́ctor Mañosa
Dynamics on invariant graphs in planar continuous piecewise linear maps
Chair: Armengol Gasull

10:00 Coffee break & Poster Session
10:30 Contributed talks. Session 4.
13:00 Lunch

16:15
Davide Radi
Abundance of weird quasiperiodic attractors in piecewise linear discontinuous maps
Chair: René Lozi

17:00 Coffee break
17:30 Contributed talks. Session 5.
20:00 Closing Ceremony

Contributed talks. Session 4. Chair: Davide Radi

10:30
Armengol Gasull
On the dynamics of a family of planar discontinuous piecewise linear maps

11:00
Daniel Nieves Roldán
On the dynamics of a family of max-type difference equations

11:30

José Ginés Esṕın Buend́ıa

Attracting fixed points for the Buchner-Żebrowski equation: the
role of negative Schwarzian derivative

12:00
Aymen Daghar
Topological sequence entropy of tree maps

12:30
Iryna Sushko
On the emergence and properties of weird quasiperiodic attractors
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Contributed talks. Session 5. Chair: Azmy S. Ackleh

17:30
Laura Gardini
Weird quasiperiodic attractors in two-dimensional PWL and PWS triangular maps

18:00
Francisco Balibrea
Difference equations related to Thue-Morse, Fibonnaci and
Rudin-Shapiro sequences

18:30
Peter Raith
Multifractal dimensions of invariant subsets for piecewise monotonic maps

19:00
Eddy Kwessi
Wave Propagation and Global Dynamics of Invasion via Lattice Difference Equations

19:30
Dorsaf Bazzaa
Dynamics of Population Growth: Stability Analysis of the Ricker Model

Poster Session.

10:00
Khadija Ben Rejeb
Existence proof of a chaotic attractor for the Lozi mappings

10:00
Maŕıa Muñoz-Guillermo
Weird quasiperiodic attractors in two-dimensional
PWL and PWS triangular maps

10:00
Gabriel Soler López
On the emergence and properties of weird quasiperiodic attractors
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Plenary Talks

Evolutionary Discrete-Time Models in Ecology and Epidemiology

Saber Elaydi∗

This talk focuses on the application of evolutionary discrete-time models in the study of
population dynamics, particularly in the fields of ecology and epidemiology. These models
provide essential insights into the interactions between ecological processes and evolution-
ary dynamics, especially in relation to disease transmission, adaptation, and resistance in
populations.

We begin by reviewing discrete-time models and their incorporation of evolutionary pro-
cesses such as selection, mutation, and migration. These models are especially useful in
studying the spread of diseases and the evolution of pathogen resistance, providing a math-
ematical framework for understanding the dynamics of evolving populations.

The global dynamics of studies systems will be analyzed using theorems on mixed mono-
tone maps, Liapunov functions, and other techniques. Recent work (Elaydi et al., 2025;
Cushing et al., 2023) will be utilized, highlighting how bifurcation theory and stability anal-
ysis are applied to model the evolution of resistance in diseases like malaria and tuberculosis.
The talk emphasizes the role of bifurcation analysis in identifying critical thresholds in pop-
ulation dynamics, where small changes in parameters can lead to significant shifts, such as
the emergence of new disease strains or population collapse.

References

1. S. N. Elaydi and J. M. Cushing, Discrete Mathematical Models in Population Biology:
Ecological, Evolutionary, and Epidemic, Springer. (2025)

2. Cushing, J. M., Henson, S. M., & Hayward, J. L, Dynamics,Dynamics of Marine
Vertebrates: Behavioral, Population, and Evolutionary Models, Springer. (2023).

* e–mail: selaydi@trinity.edu
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Volume entropy of surface groups: a dynamical approach

Llúıs Alsedá∗, David Juher, Jérôme Los, Francesc Mañosas

In this talk we solve [1,2] a purely algebraic problem using dynamical systems tools, in
particular the theory of kneading invariants of Milnor-Thurston. Consider the fundamental
group G of a compact surface. Let P = 〈X|R〉 be any presentation of G, where X is a
set of generators and R is a set of relations (words in the alphabet X that are equivalent
to the identity element). The presentation P is called geometric if the associated Cayley
graph is planar. The volume entropy of G with respect to P is an important quantity in
Geometric Group Theory. It is defined as the exponential growth rate, as m goes to infinity,
of the number of vertices in the Cayley graph at distance m from the identity vertex. In
this setting, we will construct a dynamical system defined by a piecewise continuous and
monotone map of the circle, whose topological entropy is computable and coincides with the
volume entropy. The algorithm, which is explicit and depends only on the set of relations
R, has been implemented in Maple and Maxima languages.

References

1. Ll. Alsedà, D. Juher, J. Los, F. Mañosas, On families of Bowen-Series-like maps for
surface groups, Regul. Chaotic Dyn., 28(4-5) (2023), 659–667.

2. Ll. Alsedà, D. Juher, J. Los, F. Mañosas, Entropy stability and Milnor-Thurston
invariants for Bowen-Series-like maps, Preprint (2024).

* e–mail: david.juher@udg.edu
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Difference equations in mathematical modeling: Exploring the
Rosenzweig-MacArthur predator-prey model

(stability, bifurcations, permanence)

Senada Kalabusic∗, Emin Beso, Esmir Pilav

This presentation explores the Rosenzweig-MacArthur predator-prey model, an impor-
tant concept in ecology and mathematical biology. The model is defined by difference equa-
tions derived from Euler discretization and features a general functional response for the
predator.

Our main focus is identifying an open, positively invariant set of the system. This set is
more than just a theoretical construct; it is crucial to ensure that all subsequent analyses are
biologically meaningful, enhancing the model’s applicability to real-world ecological systems.

The presentation is divided into two parts. In the first part, we will briefly introduce
the Rosenzweig-MacArthur predator-prey model. The second part will examine the closed
positive invariant set and the complex dynamics of the system within that set. We will also
demonstrate that, despite the observed dynamics, the system remains permanent within this
set, highlighting the model’s complexity.

References

1. E. C. Balreira, S. Elaydi, S., R. Luis, Local stability implies global stability for the
planar Ricker competition model, Discrete and Continuous Dynamical Systems - Series
B 19(2) (2014), pp. 323-351. http://doi.org/10.3934/dcdsb.2014.19.32.

2. E. Beso, S.K., E. Pilav, Dynamics of the discrete-time Rosenzweig-MacArthur predator-
prey system in the closed positively invariant set, Computational and Applied Mathe-
matics 42, 341 (2023). https://doi.org/10.1007/s40314-023-02481-w.

3. G. F. Gause, The struggle for existence. Williams and Wilkins, Baltimore, 1934.

4. Gause G. F., Smaragdova N.P., Witt A.A., Further studies of the interaction between
predator and prey, J Animal Ecol 5 (1936), pp. 118.

5. H. I. Freedman and Joseph W.-H. So, Persistence in Discrete Semidynamical Systems,
SIAM Journal on Mathematical Analysis 20(1989). DOI:10.1137/0520062.

6. H. I. Freedman and P. Waltman, Persistence in models of three interacting predator-
prey populations, Mathematical Biosciences, 68(2)(1984), pp. 213231.

7. Gregor F Fussmann, Bernd Blasius, Community response to enrichment is highly sen-
sitive to model structure, Biol. Lett. 1 (2005), pp. 9-12. doi: 10.1098/rsbl.2004.0246.
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8. J. Hofbauer, V. Hutson, and W. Jansen, Coexistence for systems governed by difference
equations of Lotka-Volterra type, J. Math. Biol. (25) (1987), pp. 553-570.

9. R. Kon and Y. Takeuchi, Permanence of host-parasitoid system, Nonlinear Analysis
47 (2001), pp. 1383-1393.

10. Vlastimil Krivan, On the Gause predator-prey model with a refuge: a fresh look at the
history, Journal of Theoretical Biology, Volume 274, Issue 1 (2011), pp. 67-73.

11. M.R. Myerscough, M.J. Darwen, W.L. Hogarth, Stability, persistence and structural
stability in a classical predator-prey model, Ecol. Modeling 89 (1980), pp. 3142.

12. S.E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets
for diffeomorphisms, Publications Mathmatiques de lIHS 50(1) (1979), pp. 101151.
Doi:10.1007/bf02684771 10.1007/bf02684771

13. Alexandre A. Rodrigues, Abundance of Strange Attractors Near an Attracting Period-
ically Perturbed Network, SIAM Journal on Applied Dynamical Systems (20) (2021).
Doi:(2021)10.1137/20M1335510

14. M.L. Rosenzweig, R.H. MacArthur, Graphical representation and stability conditions
of predator-prey interactions, Am. Nat. 97 (1963), pp. 209-223.

15. M.L. Rosenzweig, Paradox of enrichment: destabilization of exploitation ecosystems in
ecological time, Science 171 (1971), pp. 385387.

16. S.J. Schreiber, Criteria for Cr Robust Permanence, Journal of Dierential Equations
162 (2000), pp. 400-426.

17. S. J. Schreiber,Chaos and population disappearances in simple ecological models, J.
Math. Biol. 42 (2001), pp. 239260.

18. Gunog Seo, Gail S. K. Wolkowicz, Sensitivity of the dynamics of the general Rosen-
zweigMacArthur model to the mathematical form of the functional response: a bifurca-
tion theory approach, J. Math. Biol.https://doi.org/10.1007/s00285-017-1201-y 2018.

19. Hal L. Smith, The Rosenzweig-MacArthur predator-prey model, math.la.asu.edu

20. Q. Wang, L.S. Young, Dynamical prole of a class of rank-one attractors, Ergod. Th.
& Dynam. Sys.(33) (2013), pp. 12211264 Cambridge University Press.

21. H. Whitney, On singularities of mappings of euclidean spaces. mappings of the plane
into the plane, Annals of Mathematics 62(3) (1955), pp. 374410.

22. Stephen Willard, General Topology, Dover Publication, 2004.

* e–mail: senadak@pmf.unsa.ba
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Dynamics on invariant graphs in planar continuous piecewise
linear maps

V́ıctor Mañosa∗

From the foundational works of Lozi and Devaney [2, 3], it is well-known that planar
continuous piecewise linear maps can exhibit complex behaviors, particularly chaotic dy-
namics. In our recent works [5,6], we identified what we believe to be a novel phenomenon
in continuous piecewise linear maps: the existence of compact one-dimensional graphs that
capture the global dynamics in the plane. Within these graphs, chaotic dynamics emerge for
certain parameter values, giving rise to an intermediate dynamical regime between regular
behavior and full-plane chaos.

Although this behavior is not exclusive to this family, we detected it in the family defined
by

F (x, y) = (|x| − y + a, x− |y|+ b) ,

where (a, b) ∈ R2, which has been analyzed in previous studies where this behavior does not
appear, such as [1, 4, 7, 8].

In this talk, I will present the main results from [5], focusing on the parameter values
for which these graphs exist. Through specific examples, I will explain in detail how these
invariant graphs are formed and the types of dynamics they exhibit. In particular, I will out-
line the arguments used to compute or bound the topological entropy for the maps restricted
to these graphs.

The results I will present are part of joint work with Anna Cima, Armengol Gasull, and
Francesc Mañosas from the Universitat Autònoma de Barcelona.

References

1. B. Aiewcharoen, R. Boonklurb, N. Konglawan, Global and local behavior of the system
of piecewise linear difference equations xn+1 = |xn| − yn − b and yn+1 = xn − |yn| + 1
where b ≤ 4. Mathematics, 9 (2021), 1390-27pp.

2. R. L. Devaney, A piecewise linear model for the zones of instability of an area-preserving
map, Physica D 10 (1984), 387-393.

3. R. Lozi, Un attracteur étrange (?) du type attracteur de Hénon, J. Phys. Colloques,
39 (1978), C5–9–C5–10.

4. I. Bula, A. S̄ıle, About a system of piecewise linear difference equations with many
periodic solutions, in S. Olaru et al. (eds.). Difference Equations, Discrete Dynamical
Systems and Applications, Springer Proceedings in Mathematics & Statistics 444, 29–
50. Springer, New York, 2024.
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5. A. Cima, A. Gasull, V. Mañosa, F. Mañosas, Invariant graphs and dynamics of a family
of continuous piecewise linear planar maps. Qualitative Theory of Dynamical Systems
24:70 (2025), 103 pp.

6. A. Cima, A. Gasull, V. Mañosa, F. Mañosas, Further results for a family of continuous
piecewise linear planar maps, arXiv:2503.02411 [math.DS]

7. W. Tikjha, Y. Lenbury, E. Lapierre, Equilibriums and periodic solutions of related
systems of piecewise linear difference equations, Int. J. Math. Comput. Sim., (2013),
323–335.

8. W. Tikjha, E. Lapierre, T. Sitthiwirattham. The stable equilibrium of a system of
piecewise linear difference equations, Adv. Difference Equ., (2017), Paper No. 67,
10pp.

* e–mail: victor.manosa@upc.edu

25



Progress on Difference Equations 2025

Abundance of weird quasiperiodic attractors in piecewise linear
discontinuous maps

Davide Radi∗ Laura Gardini, Noemi Schmitt, Iryna Sushko, Frank
Westerhoff

In this work, we consider a class of n-dimensional, n ≥ 2, piecewise linear discontinu-
ous maps that can exhibit a new type of attractor, called a weird quasiperiodic attractor
(discovered for the first time in [1] where a financial market model is considered, see also
[4]). While the dynamics associated with these attractors may appear chaotic, we prove
that a chaotic attractor cannot occur. The considered class of n-dimensional maps allows
for any finite number of partitions, separated by various types of discontinuity sets. The key
characteristic, beyond discontinuity, is that all functions defining the map have the same
real fixed point. These maps cannot have hyperbolic cycles other than the fixed point it-
self. We consider the two-dimensional case in detail. We prove that in nongeneric cases,
the restriction, or the first return, of the map to a segment of straight line issuing from the
fixed point is reducible to a piecewise linear circle map (see, e.g., [3]). The generic attractor,
different from the fixed point, is a weird quasiperiodic attractor, which may coexist with
other attractors or attracting sets. We illustrate the existence of these attractors through
numerous examples, using functions with different types of Jacobian matrices, as well as with
different types of discontinuity sets. In some cases, we describe possible mechanisms leading
to the appearance of these attractors. We also give examples in the three-dimensional space.
Several properties of this new type of attractor remain open for further investigation, see
also [2].

References

1. L. Gardini, D. Radi, N. Schmitt, I. Sushko and F. Westerhoff,On the limits of infor-
mationally efficient stock markets: New insights from a chartist-fundamentalist model.
Submitted for publication. (2025) https://arxiv.org/abs/2410.21198.

2. L. Gardini, D. Radi, N. Schmitt, I. Sushko and F. Westerhoff, On the emergence
and properties of weird quasiperiodic attractors, Submitted for publication. (2025)
https://arxiv.org/pdf/2503.11264.

3. L. Gardini, D. Radi, N. Schmitt, I. Sushko and F. Westerhoff, Dynamics of 1D discon-
tinuous maps with multiple partitions and linear functions having the same fixed point.
An application to financial market modeling, Working Paper, University of Bamberg
(2025) (DOI: 10.48550/arXiv.2503.20449, https://arxiv.org/abs/2503.20449).

4. L. Gardini, D. Radi, N. Schmitt, I. Sushko and F. Westerhoff, How risk aversion may
shape the dynamics of stock markets: a chartist-fundamentalist approach, Working
Paper, University of Bamberg (2025).
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Contributed talks and Posters

How predator evolution to lethal or sublethal toxicant effects
alters the dynamics of a discrete-time predator-prey system

Azmy S. Ackleh∗, Neerob Basak, Amy Veprauskas

We extend the predator-prey model developed in [1] by incorporating the evolution of
a predators resistance to toxicant effects. Specifically, we examine three scenarios: (1)
lethal effects, where the toxicant influences predator survival; (2) sublethal effects, where the
toxicant affects predator fecundity; and (3) mixed effects, where both survival and fecundity
are impacted. Assuming a trade-off between toxicant resistance and prey capture ability,
we model the evolutionary dynamics of the predator under sustained toxicant exposure. For
the first two cases, we derive conditions for the existence and stability of equilibria, as well
as criteria for system persistence. All three cases are further explored through numerical
simulations to gain deeper insight into the role of predator evolution on system dynamics.
Our results show that the evolution of resistance can enable predator persistence under
conditions that would otherwise lead to extinction. However, in the case of lethal effects, we
find that evolution can sometimes give rise to multiple stable boundary equilibria. In such
instances, evolution in response to toxicant exposure may paradoxically lead to predator
extinction, whereas in the absence of resistance evolution, the predator population would
persist.

References

1. Ackleh, A. S., Hossain, M. I., Veprauskas, A., and Zhang, A. (2019). Persistence and
stability analysis of discrete-time predator-prey models: a study of population and
evolutionary dynamics. Journal of Difference Equations and Applications, 25(11):1568-
1603.

* e–mail: azmy.ackleh@louisiana.edu
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Chaos Control and Mixed Mode Oscillations in a Bertrand
Duopoly Model with Quadratic Costs

Mourad Azioune∗, Mohammed Salah Abdelouahab, René Lozi

In this paper, we examine the emergence of complex dynamics, including chaos, bifur-
cations, and mixed mode oscillations, in a Bertrand duopoly model where firms compete
with homogeneous expectations and quadratic cost functions. By analyzing the nonlinear
behavior of the system, we identify conditions leading to instability, flip bifurcations, and
chaotic fluctuations in market prices. We explore how flip bifurcations play a crucial role in
the transition to chaos, leading to unpredictable market behavior. To address these irregu-
larities, we employ a state feedback control approach designed to suppress chaos and restore
stable equilibrium. Our results highlight the interplay between competition, cost structures,
bifurcation mechanisms, and dynamic stability, offering insights into the application of chaos
control methods in economic modeling.

Keywords: Bertrand duopoly, chaos control, bifurcation, mixed mode oscillations, non-
linear dynamics.

References

1. Azioune, M., & Abdelouahab, M. S. (2025). Controlling chaos and mixed mode os-
cillations in a Bertrand duopoly game with homogeneous expectations and quadratic
cost functions. Mathematics and Computers in Simulation, 233, 553-566.

2. Amira, R., Abdelouahab, M. S., Touafek, N., Mesmouli, M. B., Zaidi, H. N., & Hassan,
T. S. (2024). Nonlinear dynamics in a remanufacturing duopoly game: spectral entropy
analysis and chaos control. AIMS Mathematics, 9(3), 7711-7727.

* e–mail: m.azioune@centre-univ-mila.dz

Exploring the κ-logistic Growth Model: Dynamics and Insights

Mauro Maria Baldi∗, Cristiana Mammana, Elisabetta Michetti

Economic growth, central in Macroeconomics, has been analyzed through various models,
starting with Ramsey [1] and Solow-Swan [2]. Böhm and Kaas [3] proposed a model analyzing
capital per capita in discrete time, introducing differential savings between workers and
shareholders. They ensured a unique steady state by using the weak Inada conditions.

Subsequent models relaxed these assumptions [4,5,6,7].
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This paper introduces the κ-logistic function, a generalization of the logistic function,
based on the κ-exponential function (expκ) by Kaniadakis [8]. The κ-logistic function ac-
counts for rare events affecting economic growth, such as natural disasters or epidemics. It
provides more flexibility, modeling both concave and convex-concave production functions,
and allows varying upper bounds for production, adapting to economies at different stages
of development.

The model, analyzed through analytical and numerical methods, exhibits behaviors such
as concave, non-concave, and bimodal dynamics. It may display multistability, where the
economy’s equilibrium depends on initial conditions. In low-development economies or
those frequently impacted by rare events, poverty traps can emerge. In contrast, developed
economies can achieve growth, even with rare shocks.

In conclusion, the κ-logistic model offers a flexible approach to studying economic dy-
namics, incorporating both typical growth behavior and the effects of rare, extreme events.

Acknowledgement

Mauro Maria Baldi and Elisabetta Michetti have been funded by the European Union -
NextGenerationEU under the Italian Ministry of University and Research (MUR) National
Innovation Ecosystem grant ECS00000041 - VITALITY - CUP D83C22000710005.

References

1. F. P. Ramsey. A Mathematical Theory of Saving. The Economic Journal, 38(152):543–
559, 1928.

2. R. M. Solow. A Contribution to the Theory of Economic Growth. The quarterly
journal of economics, 70(1):65–94, 1956.
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Difference equations related to Thue-Morse, Fibonnaci and
Rudin-Shapiro sequences

Francisco Balibrea∗

Thue-Morse, Fibonacci and Rudin-Shapiro sequences appear in many combinatorial,
symbolic and physical problems. They are interesting since such problems can be dealt
and understood by non-linear difference equations. Problems of transmission of waves intro-
duced by Avishai and Berend in several papers published in Physical Review, can be treated
by the plane system of equations

Ta,b(x, y) = (x(a− x− y), bxy)

where a, b are real parameters.
In the case of Fibonacci sequences again in the transmission of waves can be understood

by the system of equations in R3

Fa,b,c(x, y, z) = (ay, bz, cy(z − x))

where a, b, c are real parameters.
Rudin-Shapiro sequences produce in the solution of a one dimensional Schrodinger similar

systems.
The main aim of the talk is to study some properties of the solutions of the formers

systems under the dynamics point of view.
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Dynamics of Population Growth: Stability Analysis of the Ricker
Model

Dorsaf Bazzaa∗, Jose S. Cánovas

In this article, we investigate the Ricker equation, a mathematical model that describes
population dynamics through the function f(x, r, α) = xαer(1−x

γ). Here, x represents the
population size, while parameters r, α, and γ influence growth rates and ecological interac-
tions. We analyze the fixed points of the model and their stability as the parameter α varies.
Our findings reveal distinct cases: when α = rγ + 1, the system exhibits two fixed points,

x = 0 and x1 = 1; when α > rγ + 1, three fixed points emerge, including x0 =
(
α−1
rγ

) 1
γ
. The

stability of these points is contingent on the relationship between x0 and 1. Additionally, we
establish that the Schwarzian derivative of the function is negative for all x > 0, indicating
the presence of a unique stable fixed point under certain conditions. This work contributes
to the understanding of population dynamics and the implications of parameter variations
in ecological models.
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Existence proof of a chaotic attractor for the Lozi mappings

Khadija Ben Rejeb∗

Strange attractors have been observed numerically in many interesting models such as
Lorenz systems, Hénon system, and other models that can be proposed for chaotic dynamics
of some phenomena like turbulence, weather prediction, .... In order to obtain the sim-
plest models that can describe chaotic phenomena, 2D piecewise-linear maps are extensively
studied including the famous Lozi mapping of the plane given by the formula

L(x, y) = (1 + y − a|x|, bx); (1)

where a and b are two real parameters. A trapping region of L is a compact subset G of the
plane that is mapped into its interior. So, (Ln(G))n≥0 is a decreasing sequence converging to
some closed subset A. If there is no closed subset of A which is limit of a same sequence, then
A is called an attractor for L. The unstable manifold at the fixed point X = ( 1

1+a−b ,
b

1+a−b)
is defined by the set

W u
X := {B ∈ R2 : L−m(B) −→ X, as m −→ +∞}. (2)

Consider the region of parameters S defined by

S := {0 < b < 1, b+ 1 < a < 2− b

2
}. (3)

In [1], Misiurewicz proved that for some subset of S, an attractor A of L exists, such
that A = W u

X , A is the closure of some orbit, and the restriction L|A is weakly mixing. Such
attractor is called as hyperbolic attractor (see also [2]).

In this talk, we prove that for the whole region S, the map L has a chaotic attractor
A = W u

X , and the restriction L|A is Li-Yorke chaotic. For this aim, we prove the following
properties.

• W u
X = I1 ∪ ∪∞n=0L

n(J1), W
s
X = I2 ∪ ∪∞n=0L

−n(J2), (see Figure 1).

• A = ∩∞n=0L
n(G) = lim supn L

n(G ∩ P+) = ∪n∈ZLn(VX ∩ A), for every neighborhood
VX ⊂ int(G), (see Figure 2).

• A = W s
X ∩ A.

• The restriction L|A is Li-Yorke chaotic.
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Topological sequence entropy of tree maps

Aymen Daghar∗, Jose S. Cánovas

We prove that a zero topological entropy continuous tree map always displays zero topo-
logical sequence entropy when it is restricted to its non-wandering and chain recurrent sets.
In addition, we show that a similar result is not possible when the phase space is a dendrite
even when we consider only the restriction on the set of periodic points.

References

1. Cánovas, J. S, Daghar, A. Topological sequence entropy and topological dynamics of
tree maps. Journal of Mathematical Analysis and Applications, 525(1) (2023), 127-133.

* e–mail: aymen.daghar@isgb.ucar.tn

Attracting fixed points for the Buchner-Żebrowski equation: the
role of negative Schwarzian derivative

José Ginés Esṕın Buend́ıa∗, V́ıctor Jiménez López

Roughly speaking, if I ⊂ R is an interval, we say that a C3 map h : I → I belongs to the
class S if it is unimodal, has a unique fixed point and its Schwarzian derivative is negative.
The well-known Singer-Allwright theorem states that maps belonging to the class S have a
locally attracting fixed point only if this attractor is global.

If, given a map h as above, the one-dimensional system xn+1 = h(xn) presents a repelling
fixed point u, one can perturb the system to a multi-dimensional one

xn+1 = (1− α)h(xn) + αxn−k (4)

where 0 < α < 1 (the so-called Buchner-Zebrowski equation) with, when k is even, (possibly)
u being a local attractor.

In this context the following question seems natural: does local attraction for the per-
turbed system (4) imply global attraction? We present our investigation in this regard: a
negative answer to the question (in general) is given. Furthermore, we shall discuss the role
that the Schwarzian derivative plays in this research and why it allows us to conjecture that
a positive answer to the question is plausible for large values of k.
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Discrete population models and dispersal: Part II

Daniel Franco∗

Understanding the effect of dispersal on the total biomass of spatially fragmented popula-
tions is a key question in ecology. In the talk of this conference entitled Discrete population
models and dispersal: Part I will be shown that the possible response scenarios of the
overall population size to increasing dispersal are either monotonic or hump-shaped when
considering two-patch discrete-time population dynamics with local dynamics described by
Beverton-Holt maps. Here, we will discuss how modifying the model to include certain as-
pects relevant form the ecological point of view can reduce or enlarge this number of possible
response scenarios. This work has been done in collaboration with C. Guiver (Napier E. Uni-
versity, UK), H. Logemann (U. Bath, UK), M. Marvá (U. Alcalá, Spain), J. Perán (UNED,
Spain), and J. Segura (EADA Business School, Spain).
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Weird quasiperiodic attractors in two-dimensional PWL and
PWS triangular maps

Laura Gardini∗, Davide Radi, Noemi Schmitt, Iryna Sushko, Frank
Westerhoff

The class of two-dimensional discontinuous piecewise linear (PWL) maps defined by
functions with the same fixed point have a particular kind of dynamics [1,3]. There may
be attracting sets consisting in segments filled with nonhyperbolic cycles or quasiperiodic
trajectories, that are non generic and structurally unstable. The generic occurrence is some
attractors with a strange structure that we call weird quasiperiodic attractors (WQAs).

In this talk, we show that the class of maps having dynamics characterized by the exis-
tence of WQAs includes also some discontinuous piecewise smooth (PWS) maps. This comes
immediately from the fact that PWL discontinuous maps in our class are topologically con-
jugate to discontinuous PWS maps with a component that is a linear-fractional function.
This leads to the class of discontinuous triangular maps. A few examples in this class are
then used to clarify some of the properties of this kind of attractors.
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On the dynamics of a family of planar discontinuous piecewise
linear maps

Armengol Gasull∗

We consider the family of discontinuous piecewise linear maps

Fα(x, y) =

(
cos(α) sin(α)
− sin(α) cos(α)

)(
x− sign(y)
y

)
.

For the special cases α ∈ A := {π/3, π/2, 2π/3, 4π/3, 3π/2, 5π/3}, they are pointwise peri-
odic but not globally periodic. In particular, their sets of periods are unbounded. For each
of these cases, in [1], we prove the existence of a first integral whose energy levels are discrete
and, furthermore, whose level sets are bounded sets whose interior is a necklace formed by a
finite number of open tiles of a certain regular or uniform tessellation. We also describe the
dynamics of the maps on each invariant set of tiles in geometric terms. It depends explicitly
on the value of the first integral on each of them.

The general properties of the maps Fα with α /∈ A, being a rational multiple of π, are
still not completely known, see [2,3]. For them we present several partial results given in
[2] and also propose some open problems. All the results are obtained in collaboration with
Anna Cima, Vctor Maosa and Francesc Maosas.
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On numerical analysis of car-following models with discrete
fractional operators

Ewa Girejko∗, Katarzyna Topolewicz, Agnieszka B. Malinowska

The purpose of the car following model (CFM) is to control the driver’s behavior with
respect to the preceding vehicle in the same lane. In the basic approach, the state of a given
car - that is, its position and speed - is controlled to bring its state as close as possible to
that of the leading car [1,2,3]. The application of fractional operators to car-following models
provides a more nuanced and realistic representation of traffic dynamics by incorporating
memory effects and non-local interactions, and a better understanding of human behavior.
This approach holds promise for advancing the accuracy and applicability of car-following
models in simulating and understanding complex traffic scenarios. During the talk, the car-
following model with fractional Gronwald-Letnikov and Caputo operators will be considered.
We indicate and prove stability conditions for systems with these operators, showing that
they are independent of the operator used. An exhaustive numerical analysis that verifies
and illustrates theoretical investigations will be provided.
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Connecting stationary fronts of Nagumo lattice differential
equation with a functional equation

Jakub Hesoun∗

Motivated by a study of stationary states in a semidiscrete formulation of the classical
reaction-diffusion equation with bistable dynamics (known as Nagumo lattice differential
equation)

u′i = d (ui−1 − 2ui + ui+1) + g(ui), i ∈ Z, (5)
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where d > 0 and g is a cubic-like function satisfying g(0) = g(a) = g(1) = 0 for some
a ∈ (0, 1), we derive a functional equation

f(u) + f−1(u)

2
= ϕ(u), (6)

with ϕ being function associated with reaction term g.
In this talk, we present the relation between the functional equation (6) and a mirroring

scheme – a geometric interpretation of the second-order difference equation given by (5)
with zero left-hand side. We establish sufficient conditions for the local solvability and
uniqueness of the solution, and provide explicit global solutions over the interval [0, 1] for
certain functions ϕ. As a consequence of our study of the functional equation (6), we obtain
stationary wave solutions of the original model.

This is a joint work with Petr Stehĺık and Jonáš Volek.
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Sensitivity analysis for attractors of a stochastic piecewise
ARMA(2,2)-type asset-price model

Jochen Jungeilges∗, Tatyana Perevalova, Iryna Sushko, Fabio Tramontana

Based on [1] we specify a stochastic financial market model in which fundamentalists
and two types of chartists, i.e. trend followers and contrarians, trade simultaneously. The
stochastic asset price process takes the form of a piecewise ARMA(2,2) process. The de-
terministic skeleton of this process is constituted by a two-dimensional discontinuous map
defined by two linear functions. One of the functions operates in the partition between
two (parallel) discontinuity lines, whereas the other acts outside this partition. Despite
its linearity, the deterministic skeleton exhibits complex dynamics and coexistence of var-
ious attractors. Our analysis of the stochastic system focuses on the sensitivity of fixed
points and cycles to noise. To facilitate our analysis, the controllable-canonical form of
the ARMA(2,2) model is derived. Then, the sensitivity of the attractors of the resulting
minimal-dimensional Markovian model to additive noise is studied.All results are obtained
by combining the stochastic sensitivity function (SSF) approach due to [2] with concepts

40



Progress on Difference Equations 2025

and techniques employed by [1] in their study of the deterministic 2D discontinuous finan-
cial market model. We accentuate the economic interpretation of phenomena revealed in the
course of the sensitivity analysis and expound aspects of the statistical estimability of the
asset price model.
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Wave Propagation and Global Dynamics of Invasion via Lattice
Difference Equations

Eddy Kwessi∗

We develop and analyze a lattice difference equation (LDE) framework to model the
spatial dynamics of Wolbachia invasion in mosquito populations. This framework extends
beyond classical integro-difference and reaction-diffusion models by incorporating spatial
discreteness and habitat fragmentation more faithfully, making it well-suited for urban and
patchy landscapes. The model integrates a biologically motivated growth function that
exhibits bistability and an Allee threshold, arising from cytoplasmic incompatibility and
relative fitness costs of Wolbachia infected hosts. We rigorously prove the existence of a
global attractor, characterize the local stability of equilibria, and demonstrate the existence
of traveling wave solutions. A key focus is on how dispersal kernels ranging from Gaussian
to Cauchy interact with the Allee effect to influence wave formation, propagation speed, and
invasion success. Our numerical simulations reveal that long-tailed kernels can overcome the
Allee threshold through seeding effects, significantly accelerating wave fronts. These findings
have direct implications for vector control strategies, informing optimal release thresholds
and spatial targeting in heterogeneous environments. This work bridges theory and appli-
cation, providing both analytical insights and computational tools for understanding spatial
epidemiology in discrete habitats
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Non-constant periodic solutions of the Ricker model with periodic
parameters

Fangfang Liao∗, Na Sun, Yu Gu

In this talk, we will introduce some new results about the Ricker model

xn+1 = xn exp[rn(1− xn)], n = 0, 1, 2 . . . , (∗)

where x0 ≥ 0, and {rn}∞n=0 is a sequence of positive ω-periodic numbers. Some sufficient
conditions on the existence of non-constant periodic solutions for equation (∗) are given. For
the special case of period-two parameters, we show that (∗) has at most two non-constant
2-periodic solutions. We also obtain necessary and sufficient conditions for (∗) to have no, a
unique, or exact two 2-periodic solutions, respectively. Examples are also given to illustrate
our main results at last.

This is joint work with professors Xiaoping Wang, Fulai Chen.
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On totally periodic ω-limit sets for monotone maps on regular
curves

Amira Mchaalia∗

An ω-limit set of a continuous self-mapping of a compact metric space X is said to be
totally periodic if all of its points are periodic.

Let X be a regular curve and let f : X → X be a monotone map. We show that any
totally periodic ω-limit set is finite. This result extends that of Askri and Naghmouchi [1]
established whenever f is one-to-one continuous map on regular curves (in particular for f
homeomorphism).
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Logistic fractional variable order discrete-time equation with
distributed delays

Dorota Mozyrska∗, Malgorzata Wyrwas

This paper investigates the discrete-time logistic fractional variable-order equation with
distributed delays. Motivated by the increasing relevance of fractional-order models in the
description of memory and hereditary properties in complex systems [1], we extend the
discrete-time fractional framework by incorporating both variable-order dynamics and in-
finite distributed delays, offering a more realistic approach. The study builds on recent
advances in the theory of discrete fractional systems with Caputo-type operators [2,3] and
addresses the critical issue of proper initialization for systems with infinite memory [4,5]. We
provide a comprehensive analysis of the stability of solutions. Numerical simulations based
on piecewise constant order functions and geometric memory kernels are presented to illus-
trate the theoretical results and to show the delicate balance between fractional dynamics
and delay-induced phenomena [6].
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Weird quasiperiodic attractors in two-dimensional PWL and
PWS triangular maps

Maŕıa Muñoz-Guillermo∗, Jose S. Cánovas

It is usual to approach the bifurcation problem using numerical and computational meth-
ods. In this case we will address the possibility of giving sufficient analytical conditions
that allow us to conclude the existence of codimension-1 bifurcations of the fold, trans-
critical, pitchfork and flip type for a dynamical system which is governed by the equation
xn+1 = f(xn−1, xn, a), where a ∈ R is a parameter. Thus, if these conditions are met, we
will be able to affirm the existence of the corresponding bifurcation.
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Codimension-one and -two bifurcations and stability of certain
second order rational difference equation with arbitrary

parameters

Naida Mujić∗ and Zenan Šabanac

Motivated by previous investigations that analyzed the boundedness of positive solutions,
global stability, and the occurrence of Neimark-Sacker bifurcation in specific parameter cases,
we comprehensively investigate the dynamics of the second-order rational difference equation

xn+1 = C + A
xkn
xpn−1

,

where parameters k, p, A, C and initial conditions x−1, x0 are positive real numbers. We
provide a complete topological classification of fixed (equilibrium) points and examine the
local behavior of orbits in the neighborhood of these points, which, to our knowledge, has not
been previously studied in the entire admissible parameter space. Our research has discov-
ered highly complex and rich dynamic behavior, ranging from the occurrence of supercritical
and subcritical Neimark-Sacker bifurcations in different parameter spaces to the appearance
of codimension-2 bifurcations in the case of 1-1 strong resonance. A very interesting situa-
tion appears when one of the equilibria is nonhyperbolic in specific parameter space; direct
calculations have shown that both the first and second Lyapunov coefficients are equal to
zero, implying that this equilibrium is a Hopf point of codimension at least 3. This strongly
suggests the complex behavior of the studied equation, which numerical simulations have
also confirmed.
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On the dynamics of a family of max-type difference equations

Daniel Nieves Roldán∗, Antonio Linero Bas

In the last decades, there has been a special interest in studying the behaviour of models
described by difference equations with maximum. One of the most famous families of differ-
ence equations with maximum is the so-called generalized Lyness max-type equations, which
are given by

xn+1 =
max{xkn, A}
xlnx

m
n−1

, n = 0, 1, . . . , (7)

where k, l,m ∈ Z and A, x−1, x0 ∈ (0,∞).
The main goal of this talk is to advance in the knowledge of the dynamics of the family

of max-type difference equations

xn+1 =
max{xn, A}
xnxn−1

, (8)

where A, x−1, x0 ∈ (0,∞).
To do so, we study in detail concrete piecewise linear difference equations which are

topologically conjugate to Equation (8). Indeed, we describe completely the dynamics of the
family and add some new features in terms of complete integrability. Moreover, we tackle
some other cases of the generalized Lyness max-type equations which exhibits interesting
dynamics.
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Noise-induced de-synchronization in dynamic stochastic
consumption model

Tatyana Perevalova∗, Jochen Jungeilges

We study the stochastic version of the consumption model proposed in [1] in which
interacting agents form preferences endogenously and take consumption decisions in discrete
time:

x1t+1 =
b1
pxpy

(a1x1t(b1 − pxx1t) +D12x2t(b2 − pxx2t)) + εξ1,t, (9)

x2t+1 =
b2
pxpy

(a2x2t(b2 − pxx2t) +D21x1t(b1 − pxx1t)) + εξ2,t, (10)

where x1t and x2t denote units of the commodity x consumed by the first and second individ-
ual at time t, px and py are the unit prices of the commodities x and y, while the parameters
b1 and b2 represent the nominal income of the first and second individual. Prices and in-
comes are assumed to be constant in time. The real, strictly positive, parameters α1, α2 and
D12, D21 are referred to as learning and influence parameters respectively. The shocks ξ1,t
and ξ2,t are assumed to be realizations of independently and identically distributed standard
Gaussian random variables occurring at time t. The scalar constant ε ≥ 0 functions as a
noise intensity.

In a first step, we carry out an analysis of attractors and bifurcations when the value of one
of the bifurcation parameters depends on the second one as follows: D21 = 4(D12−α2) +α1.
As was shown in [2], in this case the synchronization of variables occurs on one of the
attractors, so that x2 = 2x1.

On the second stage of the analysis, we focus on the description of noise-induced de-
synchronization and transitions between attractors. For a constructive description of stochas-
tic phenomena, the stochastic sensitivity function technique [3,4] and the associated confi-
dence domain method are used.
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Multifractal dimensions of invariant subsets for piecewise
monotonic maps

Peter Raith∗

Let T : [0, 1]→ [0, 1] be an expanding piecewise monotonic map. This means that there
exists a finite family Z of pairwise disjoint open intervals with

⋃
Z∈Z Z = [0, 1] such that T

∣∣
Z

is continuous and strictly monotonic for all Z ∈ Z. Moreover, for every Z ∈ Z the map T
∣∣
Z

is
differentiable and its derivative can be extended to a continuous function on the closure of Z,
and we have inf |T ′| > 1. For a finite union of open intervals U set A(U) := [0, 1]\

⋃∞
j=0 T

−jU .
Obviously this is the set of all points whose orbit never enters U . In this talk the size of
A(U) will be investigated.

Considering two examples motivates the definition of multifractal Hausdorff dimension.
After the definition of multifractal Hausdorff dimension some results obtained together with
F. Hofbauer and T. Steinberger are presented.
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The dynamic of q-deformed logistic maps

Houssem Eddine Rezgui∗, Jose S. Cánovas

In this talk, we study a two-parameter family of q-deformed logistic maps defined by
Φq,r = φq ◦ fr, where φq(x) = 1−qx

1−q is a q-deformation on the interval I = [0, 1], and

fr(x) = rx(1− x) is the classical logistic map with r ∈ (0, 4].
In this presentation, we focus on characterizing the parameter region where the dynamics

of Φq,r is chaotic. To this end, we compute the topological entropy with fixed accuracy and
estimate Lyapunov exponents over a broad range of parameters. Our analysis reveals that
chaotic behavior also emerges for q > 1, extending previous results obtained for q ∈ (0, 1).

Additionally, we highlight how these models exhibit Parrondos paradox, where the com-
position of two dynamically simple maps produces a chaotic dynamical system. We will
show that the parameter region q ¡ 1 is highly suitable to produce the paradox.
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We conclude by presenting a generalization of the model through the study of periodic
compositions involving multiple q-deformations, and we compare our results with those ob-
tained using alternative q-deformations in the literature.
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Structure of zero entropy patterns of trees

David Rojas∗, David Juher, Francesc Mañosas

The notion of pattern plays a central role in the theory of topological and combinatorial
dynamics. Consider a family X of topological spaces (for instance the family of either all
closed intervals of the real line, or all trees, or all graphs, or compact surfaces, etc) and the
family FX of all maps {f : X → X : X ∈ X} satisfying a given restriction (continuous maps,
homeomorphisms, etc). Given a map f : X → X in FX which is known to have a finite
invariant set P , the pattern of P in FX is the equivalence class P of all maps g : Y → Y
in FX having an invariant set Q ⊂ Y that, at a combinatorial level, behaves like P . That
is, the relative positions of P inside X, and the way these positions are permuted under the
action of g coincides with the way f acts on the points of P . In this case, it is said that
every map g in the class exhibits the pattern P . In in particular P is a periodic orbit of f ,
the pattern P is said to be periodic.

In this talk we deal with periodic patterns of continuous maps defined on trees (sim-
ply connected graphs). In particular, we present a topological characterization of patterns
whose entropy is zero and present some combinatorial properties that gives a second purely
combinatorial characterization of those patterns.
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Discrete population models and dispersal: Part I

Juan Segura∗

Understanding the effect of dispersal on the total biomass of spatially fragmented popu-
lations is a key question in ecology. In discrete time, the question remained virtually open
until the work [2] for two-patch metapopulations. However, only a description for low dis-
persal rates was obtained. By contrast, in continuous time, the latest research provided a
complete theoretical description for all possible dispersal rates in the case of local logistic
growth [2,3]. These and all previous numerical and theoretical findings determined that the
possible response scenarios of the overall population size to increasing dispersal are either
monotonic or hump-shaped.

Regarding the discrete-time question, we will present two important results. First, a com-
plete description of the response scenarios to dispersal of the total biomass for local dynamics
described by Beverton-Holt maps, which are the analog of local logistic growth in continuous
time. Second, we will explore how dispersal asymmetry induced by limiting migration in one
direction can allow managers to lead the population to any desired response scenario among
the possible. This work has been done in collaboration with D. Franco (UNED, Spain), F.
Hilker (U. Osnabrück, Germany), C. Grumbach (U. Osnabrück, Germany), and F. Reurik
(U. Osnabrück, Germany).

The results presented in this talk will be extended to other situations relevant from an
ecological perspective in the talk of this conference entitled Discrete population models and
dispersal: Part II.
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On the emergence and properties of weird quasiperiodic attractors

Gabriel Soler López∗, Antonio Linero Bas

We present recent developments on minimal non-uniquely ergodic IETs with flips, in-
cluding new constructions and theoretical bounds.

The existence of minimal non-uniquely ergodic oriented IETs of n intervals requires that
n ≥ 4, as shown in [7,Th. 2.12]. Moreover, for n = 4, there are known examples of minimal
non-uniquely ergodic 4-IETs with two independent invariant measures; see [3]. Additionally,
there exists a bound on the number N of independent invariant measures that an n-IET
can admit. In particular, Veech proved in [7,Th. 2.12] that N ≤ n

2
. In fact, this bound can

be refined: he showed that N ≤ R
2

, where R is the rank of the n × n translation matrix
associated with T , which is not necessarily equal to n. Furthermore, in [8, S. IV], the reader
can find an analysis showing that N is bounded by g, the genus of the suspension surface
associated with T , where the genus satisfies g = 1 + n−m

2
, with m being the number of

so-called marked points on the surface; see [1, S. 5-6] for more details.
It is therefore interesting to seek analogous bounds for the flipped case. However, the

theory of IETs with flips is not as developed as in the oriented case. The present authors
have recently worked on the construction of minimal non-uniquely ergodic IETs with flips,
since no such examples were previously known. Finding them had been proposed as an open
problem in [2, Remark 1].

In this communication, we present recent advances in this area. First, we constructed
examples of (10, k)-IETs for 1 ≤ k ≤ 10 in [4]. This construction was later refined in
[5], where we provided examples of (6, k)-IETs and introduced technical results that could
eventually lead to constructions for (n, k)-IETs with n ≥ 5.

Finally, we announce a key result: it is not possible to construct minimal non-uniquely
ergodic (n, k)-IETs for any n ≤ 4, marking a significant difference with the oriented case,
see [6].
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on nonorientable surfaces. Discrete Contin. Dyn. Syst., 37(8):4191–4211, 2017.

2. C. Gutierrez, S. Lloyd, V. Medvedev, B. Pires, and E. Zhuzhoma. Transitive circle
exchange transformations with flips. Discrete Contin. Dyn. Syst., 26(1):251–263,
2010.

52



Progress on Difference Equations 2025

3. M. Keane. Non-ergodic interval exchange transformations. Israel J. Math., 26:188–
196, 1977.

4. A. Linero Bas and G. Soler López. Minimal non uniquely ergodic IETs with flips. J.
Differential Equations, 360:232–259, 2023.
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On the emergence and properties of weird quasiperiodic attractors

Iryna Sushko∗, Laura Gardini, Davide Radi, Noemi Schmitt, Frank
Westerhoff

We recently described a specific type of attractors of two-dimensional discontinuous piece-
wise linear maps, characterized by two discontinuity lines dividing the phase plane into three
partitions, related to economic applications [1]. To our knowledge, this type of attractor,
which we call a weird quasiperiodic attractor, has not yet been studied in detail. They
have a rather complex geometric structure and other interesting properties that are worth
understanding better. To this end, in [2] we consider a simpler map that can also possess
weird quasiperiodic attractors, namely, a 2D discontinuous piecewise linear map F with a
single discontinuity line dividing the phase plane into two partitions, where two different
homogeneous linear maps are defined. Map F depends on four parameters – the traces and
determinants of the two Jacobian matrices. In the parameter space of map F , we obtain
specific regions associated with the existence of weird quasiperiodic attractors; describe some
characteristic properties of these attractors; and explain one of the possible mechanisms of
their appearance.
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33. Maŕıa Muñoz Guillermo, Technical University of Cartagena, Spain.
email: maria.mg@upct.es

58



Progress on Difference Equations 2025

34. Daniel Nieves Roldán, Murcia University, Spain.
email: daniel.nieves@um.es

35. Tatiana Perevalova, University of Pisa, Italy.
email: tatyana.perevalova@gmail.com
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