SEGUNDO PARCIAL DE MATEMÁTICAS. GRADO DE INGENIERÍA CIVIL

Preguntas	1	2	3	4	5	6	7	8	9	10	Total
Puntuación obtenida											

1. Calcula el jacobiano de $f(x,y) = (3x^1 + 6y^2 + 3, 5x^1y^2 + 2, 1x^2y^2)$ (0.5 puntos).

Solución:

$$Jf(x,y) = \begin{pmatrix} 3x^0 & 12y^1 \\ 5x^0y^2 & 10x^1y^1 \\ 2xy^2 & 2yx^2 \end{pmatrix}$$

2. Calcula el jacobiano de g(x, y, z) = 5x + 2y + 3xyz (0.5 puntos).

Solución:

$$Jg(x,y) = \begin{pmatrix} 5 + 3yz & 2 + 3xz & 3xy \end{pmatrix}$$

3. Calcula el plano tangente a la superficie $z = g \circ f(x, y)$ en el punto que sea posible de los siguientes

$$A = (1, 1, 329), B = (1, 1, 328), C = (1, 1, 326),$$

(2 puntos).

Solución:

El punto en el que es posible hacer el plano tangente tiene qu estar en la superficie, es decir, debe verificar que $z = g \circ f(x, y)$ y eso sólo lo satisface el punto C. Para calcular el plano tangente debemos conseguir las parciales de la función $g \circ f$ en el punto (1,1) puesto que la ecuación de dicho plano es:

$$z - g \circ f(1,1) = \frac{\partial g \circ f}{\partial x}(1,1)(x-1) + \frac{\partial g \circ f}{\partial y}(1,1)(y-1)$$

Calculamos los "ingredientes": $Jg \circ f(1,1) = Jg(f(1,1))Jf(1,1) = Jg(12 \ 7 \ 1) \begin{pmatrix} 3 & 12 \\ 5 & 10 \\ 2 & 2 \end{pmatrix} =$

$$\begin{pmatrix} 26 & 38 & 252 \end{pmatrix} \begin{pmatrix} 3 & 12 \\ 5 & 10 \\ 2 & 2 \end{pmatrix} = (772, 1196)$$

Así que el plano tangente es finalmente:

$$z - 326 = 772(x - 1) + 1196(y - 1)$$

4. Describe en coordenadas esféricas el recinto $\Omega = \{(x,y,z): x^2+y^2+z^2 \leq 17^2, x < 0, y < 0, z < 0\}$ (0.5 puntos).

Solución:

$$\Omega_e = \{(r, \theta, \varphi) : r \le 17, \pi < \theta < \frac{3\pi}{2}, \frac{\pi}{2} < \varphi < \pi\}$$

5. Describe en coordenadas cilíndricas el recinto $\Omega=\{(x,y,z): x^2+y^2+z^2\leq 14^2, xz<0\}$ (0.5 puntos).

Solución:

Observa que

$$\Omega = \{(x, y, z) : x^2 + y^2 + z^2 \le 14^2, x < 0, z > 0\} \cup \{(x, y, z) : x^2 + y^2 + z^2 \le 14^2, x > 0, z < 0\}$$

$$\Omega_c = \{ (r, \theta, z) : r \le 14, \frac{\pi}{2} < \theta < \frac{3\pi}{2}, 0 < z < \sqrt{14^2 - r^2} \} \cup \{ (r, \theta, z) : r \le 14, 0 < \theta < \frac{\pi}{2}, -\sqrt{14^2 - r^2} < z < 0 \} \cup \{ (r, \theta, z) : r \le 14, \frac{3\pi}{2} < \theta < 2\pi, -\sqrt{14^2 - r^2} < z < 0 \}$$

6. Estudia la continuidad de

$$f(x,y) := \begin{cases} \frac{(y^3 + x^5)\operatorname{sen}\left(\frac{9}{(x^2 + y^2)^7}\right)}{3(x^2 + y^2)} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

(2 puntos).

Solución:

Es fácil ver mediante un paso a coordenadas polares que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ y por lo tanto la función f es continua.

7. Calcula el volumen de un sólido tridimensional cuyos puntos, (x, y, z), están delimitados por las superficies y = x, $y = x^3$, $z = 1x^2 + 1y^2$ y $z = -3x^2 - 3y^2$ (2 puntos)..

Solución:

$$V = 4\left(\frac{1}{6} - \frac{1}{3} + \frac{1}{30}\right)$$

8. Sea A el conjunto $\{(x,y): x^2+(y-6)^2 \le 3^2, x \ge 0\}$. Calcula los puntos de A que se encuentran a mayor y menor distancia de (6,6) (2 puntos).

Solución:

La función que hay que maximizar es g(x,y) = d((x,y),(6,6))El mínimo es el punto (3,6) y los máximos son (0,6) y (0,3)

Firma del alumno:

EXAMEN FINAL DE MATEMÁTICAS. GRADOS DE CIVIL Y DE RECURSOS. JUNIO DE 2012

Firma del alumno:	del alumno:					Nombre y apellidos:										
				Mo	odali	dad	de ez	kame	en ele	egida	ı :					
Preguntas	1	2	3	4	5	6	7	8	9	10	11	Total				
Puntuación obtenida																

MO	DALIDADES DE EXA	AMEN		PR	EGU	JNT	\mathbf{AS}					
FIN	AL CIVIL			1,2,	4,6,7,	8,9						
FIN	AL MINAS			6.7.	8.9 v	las	refere	ntes a	al seg	rundo	parci	al en

FINAL CIVIL

1,2,4,6,7,8,9

FINAL MINAS

6,7,8,9 y las referentes al segundo parcial en folio aparte

PRIMER PARCIAL CIVIL

de la 6 a la 11, ambas inclusive

SEGUNDO PARCIAL CIVIL

de la 1 a la 5, ambas inclusive

1. Describe el siguiente conjunto en coordenadas polares

$$\Omega = \{(x,y) : (x+1)^2 + y^2 < 1^2\}$$

(2 puntos).

Solución:

El conjunto está dibujado en la figura 1.

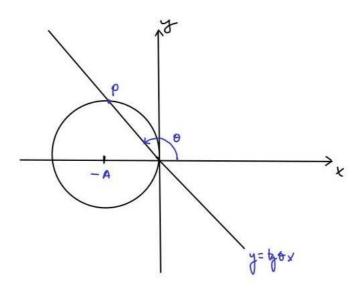


Figura 1: En esta figura A vale 1

El punto P se calcula intersecando la recta $y=\operatorname{tg}\theta$ x con el círculo $(x+1)^2+y^2<1^2$. Puedes comprobar que ese punto es $(\frac{-2}{1+\operatorname{tg}^2\theta},\frac{-2\operatorname{tg}\theta}{1+\operatorname{tg}^2\theta})$, luego $d(O,P)=2\cos\theta$ y la descripción solicitada es:

$$\Omega_p = \{(r, \theta) : \frac{\pi}{2} < \theta < \frac{3\pi}{2}, 0 < r < 2\cos\theta\}.$$

2. ¿Qué puntos tienen coordenada cilíndrica r igual a 0? (0,5 puntos).

Solución:

Todos los del eje z.

3. Calcula $\frac{\partial f}{\partial y}(0,0)$ y $\frac{\partial^2 f}{\partial y\partial x}(0,0)$ de la función

$$f(x,y) = \begin{cases} \frac{xy[(1x)^2 - (2y)^2]}{2^2(x^2 + y^2)} & \text{si}(x,y) \neq (0,0), \\ 0 & \text{si}(x,y) = (0,0). \end{cases}$$

(2.5 puntos).

Solución:

$$\frac{\partial f}{\partial y}(0,0) = 0 \qquad \frac{\partial^2 f}{\partial x \partial y}(0,0) = -\frac{4}{4} \qquad \frac{\partial^2 f}{\partial y \partial x}(0,0) = \frac{1}{4}$$

Para resolver dudas sobre este ejercicio es recomendable ver el 9.52 de la hoja de ejercicios.

4. De entre las ternas de números positivos que suman una cantidad menor o igual a 9 ¿es cierto que su producto no excede de 28?(2,5 puntos).

Solución:

Se trata de maximiar la función f(x,y,z)=xyz en el conjunto $\Omega=\{(x,y,z):x+y+z\leq 9\}$ (en la figura 4 está representado Ω). Como Ω es un conjunto compacto y f es continua tenemos que f alcanzará un máximo y un mínimo absoluto en Ω . Vamos a calcularlos.

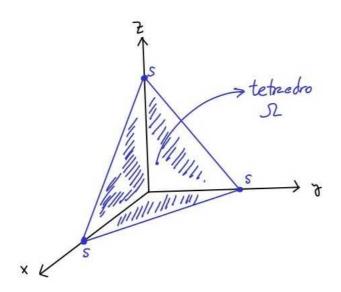


Figura 2: En esta figura S vale 9

Buscamos los extremos relativos de la función en el interior, para ello igualamos el gradiente a 0:

$$\nabla f(x, y, z) = (yz, xz, xy) = (0, 0, 0)$$

Esta ecuación no tiene puntos en el interior de Ω porque sus soluciones son los puntos que están en las aristas del tetraedro que coinciden con los ejes de coordenadas.

Seguidamente buscamos los candidatos a extremos en la frontera de Ω . Empezamos buscando en el el plano x+y+z=9. La función lagrangiana es $L(x,y,z)=f(x,y,z)+\lambda(x+y+z-9)$ y los candidatos a extremos condicionados satisfacen:

$$\nabla L(x, y, z) = (yz + \lambda, xz + \lambda, xy + \lambda) = (0, 0, 0)$$

Esta ecuación junto a la ligadura x + y + z = 9, tiene como solución a los puntos:

$$P_1 = (9,0,0), P_2 = (9,0,0), P_3 = (9,0,0), P_4(3,3,3)$$

En el resto de puntos de la frontera de Ω (las otras paredes del tetraedro) forman parte de los planos coordenados y todos los puntos son máximos y mínimos relativos condicionados porque la función f vale 0. A estos puntos los denotaremos genéricamente por Q

Ya tenemos todos los puntos candidatos a extremos. Como $f(P_1) = f(P_2) = f(P_3) = f(Q) = 0$ y $f(P_4) = 27$. Luego P_4 es el máximo absoluto de la función f y no excede su valor de 27. Así que sí es cierta la pregunta.

5. Calcula el volumen del sólido limitado por $x^2 + y^2 = 1^2$, 2x + 2y + 4z = 8 y por 2x + 2y - 4z = 8 (2,5 puntos).

Solución:

Si denotamos por Ω el conjunto $\{(x,y): x^2+y^2 \leq 1^2\}$ entonces

$$V = \iint_{\Omega} 2 - \frac{2}{4}x - \frac{2}{4}y - \left(-2 + \frac{2}{4}x + \frac{2}{4}y\right) dxdy$$
$$= \int_{0}^{1} \int_{0}^{2\pi} \left(4 + \frac{0}{4}r\cos\theta + \frac{0}{4}r\sin\theta\right) rdrd\theta = 4\pi$$

6. Calcula las ecuaciones del subespacio $W = \{(x, y, z) : 1x + 2y + 2z = 0\}$ respecto de la base $\beta = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$. Da una base de W expresando las coordenadas de los vectores de dicha base en β (1,5 puntos).

Solución:

Dado un vector $(x, y, z)_{\beta} \in W$ tendremos que $(x, y, z)_{\beta} = (x + y + z, x + y, x)$ y por estar en W tenemos que 5x + 3y + 1z = 0, luego:

$$W = \{(x, y, z)_{\beta} : 5x + 3y + 1z = 0\}.$$

 $\dim W = 3 - \operatorname{rg} A_W = 2$, así que tenemos que tomar dos vectores en W linealmente independientes y serán base:

$$\beta_W = \{(0, -1, 3), (-1, 0, 5)\}.$$

7. Calcula la primitiva $\int \sqrt{1-x^2} dx$ (1,5 puntos).

Solución:

Haremos el cambio de variable $x = 1 \operatorname{sen} \theta$:

$$\int \sqrt{1 - x^2} dx = 1 \int \cos^2 \theta d\theta = 1 \int \frac{1 + \cos(2\theta)}{2} d\theta = 1 \left(\frac{\theta}{2} + \frac{\sin(2\theta)}{4}\right)$$
$$= 1 \left(\frac{1}{2} \arcsin \frac{x}{1} + 2\frac{x}{1} \sqrt{1 - \left(\frac{x}{1}\right)^2}\right)$$

8. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por $f((x,y,z)_{\beta}) = (1x-1y,2x-2z,0)_{\beta}$. Calcula las ecuaciones de Ker f en la base canónica (1 punto). Calcula una base (expresando sus vectores en la base canónica) de Ker f (0,5 puntos).

Solución:

Empezamos calculando la matriz asociada a f respecto de la base canónica y la base β :

$$f(1,0,0) = f((0,0,1)_{\beta}) = (0,-2,0)_{\beta}$$

$$f(0,1,0) = f((0,1,-1)_{\beta}) = (-1,-2,0)_{\beta}$$

$$f(0,0,1) = f((1,-1,0)_{\beta}) = (2,2,0)_{\beta}$$

Así que

$$M_{\beta_c\beta}(f) = \begin{pmatrix} 0 & -1 & 2 \\ -2 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

у

Ker
$$f = \{(x, y, z) : 2y - 1x = -2y = 2y - 2x = 0\} = \{(x, y, z) : x = y = 0\}$$

 $\beta_{\text{Ker } f} = \{(0, 0, 1)\}.$

9. Una matriz tiene por polinomio característico a $p(x) = x^2 - 2x + 5$; es diagonalizable? $\underline{(0,5 \text{ puntos})}$.

Solución:

No puede ser diagonalizable porque posee números complejos en el espectro: $1 \pm 2i$.

10. Estudia si la matriz que sigue es diagonalizable o no. Caso de ser diagonalizable da una matriz diagonal y una matriz de paso y escribe la relación entre todas ellas.

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} \quad \underline{(2,5puntos)}.$$

Solución:

 $\sigma_A = \{1, 2\} \text{ con } m(1) = 2 \text{ y } m(2) = 1.$

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

11. Calcula el desarrollo de Taylor de orden 4 de la función $f(x) = \sqrt[3]{1+x}$. Aproxima el valor de $f(x) = \sqrt[3]{1.02}$ utilizando un desrrollo de Taylor de f(x) que nos permita asegurar que el error cometido es menor que 0.01 (2,5 puntos).

FUNDAMENTOS MATEMÁTICOS Examen Final, Primer parcial 23 de junio de 2012

Nombre y apellidos:

Fila y columna:

Instrucciones importantes

- 1. Tienes que devolver la hoja del examen, en caso contrario no se te podrá corregir porque los exámenes son diferentes.
- 2. Pon tu nombre en todos los folios y también en éste.
- 1. Calcula las ecuaciones del subespacio $W = \{(x, y, z) : 3x + 2y + 3z = 0\}$ respecto de la base $\beta = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$. Da una base de W expresando las coordenadas de los vectores de dicha base en β (1,5 puntos).

Solución:

Dado un vector $(x, y, z)_{\beta} \in W$ tendremos que $(x, y, z)_{\beta} = (x + y + z, x + y, x)$ y por estar en W tenemos que 8x + 5y + 3z = 0, luego:

$$W = \{(x, y, z)_{\beta} : 8x + 5y + 3z = 0\}.$$

 $\dim W = 3 - \operatorname{rg} A_W = 2$, así que tenemos que tomar dos vectores en W linealmente independientes y serán base:

$$\beta_W = \{(0, -3, 5), (-3, 0, 8)\}.$$

2. Estudia si la matriz que sigue es diagonalizable o no. Caso de ser diagonalizable da una matriz diagonal y una matriz de paso y escribe la relación entre todas ellas.

$$A = \begin{pmatrix} 4 & -1 & -1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \qquad \underline{(1,5 \ puntos)}.$$

Solución:

La matriz A es diagonalizable, su polinomio característico es $p_A(x) = -(x-3)^2(x-2)$. Las matrices que dan la diagonalización son:

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

3. (2 puntos). Considera las bases $\beta = \{(3,1,1), (2,1,0), (1,0,0)\}$ y $\beta' = \{(1,3,1), (8,1,0), (1,0,0)\}$ y la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ cuya definida por $M_{\beta\beta'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Se pide calcular:

a) $M_{\beta_c\beta_c}(f)$ (β_c denota la base canónica de \mathbb{R}^3).

Solución:

$$M_{\beta_c\beta_c} = \begin{pmatrix} 0 & 8 & -7 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

b) Ecuaciones de Ker f respecto de la base canónica.

Solución:

$$Ker f = \{(x, y, z) : y = z = 0\}$$

c) Una base de Ker f expresando las coordenadas de los vectores de la base en la base β .

Solución:

$$\beta_{\text{Ker } f} = \{(0, 0, 1)_{\beta}\}$$

d) Ecuaciones de Im f respecto de la base canónica.

Solución:

Im
$$f = \{(x, y, z) : y = z = 0\}$$

e) Una base de Im f expresando las coordenadas de los vectores de la base en la base canónica.

Solución:

$$\beta_{\text{Im }f} = \{(1,0,0)\}$$

Firma del alumno: