DISTRIBUTIONAL FRACTIONAL POWERS OF THE
LAPLACEAN. RIESZ POTENTIALS
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ABSTRACT. For different reasons it is very useful to dispose of a duality for-
mula for the fractional powers of the Laplacean, namely, ((—=A)%u,p) =
(u, (—A)* @), o € C, for ¢ belonging to a suitable functional space and u
to its topological dual. Unfortunately, this formula makes no sense in the
classical spaces of distributions. For this reason we introduce a new space of
distributions where the above formula is established. Finally, we apply this
distributional point of view of the fractional powers of the Laplacean to obtain
some properties of the Riesz potentials in a wide class of spaces which contains
the LP—gpaces.

1. INTRODUCTION

Throughout this paper we consider complex functions defined on R™. By D we
denote the space of functions of class C°° with compact support and by & the
Schwartz space, both endowed with their usual topologies. Given a topological
vectorial space Y, its topological dual will be denoted by Y. I T: D(T) CY — Y
is a linear operator and X C Y is a linear subspace of Y, by Tx we denote the
operator in X with domain D(Tx) = {z € XND(T): Tz € X} and defined by
Txx =Tz, for v € D(Tx). I X = LP we write T, instcad of Tp».

It is known that the restriction of the negative of the distributional Laplacean,
—A, to LP—spaces is a non-negative operator. Hence, we can calculate its fractional
powers in these spaces. However, as well as the duality identity

(Au, @) = (u, Ag), for ¢ € D and u € D’

makes sense to A f, for a non classically differentiable function, it would be desirable
that the fractional power of exponent «, Rea > 0, of this operator satisfies an
analogous relation, namely

(=A)% u, ¢) = (u, (=A)" ¢)

for ¢ belonging to a suitable functional space 7 and u to its topological dual 7”.
In the distributional space 7’ must be included the L?—spaces, 1 < p < oo, and
the fractional power (—A)® must be understood in the sense of the classical theory
of fractional powers developed by A. V. Balakrishnan and H. Komatsu in Banach
spaces and by C. Martinez, M. Sanz and V. Calvo in locally convex spaces. We
solve this problem in section 3. It is not possible to take 7 = D neither 7 = S. For
this reason we introduce an appropriate functional space.
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For a complete study of the theory of fractional powers and its applications we
refer the reader to [1, 3, 4, 5, 8, 9, 10, 11, 12, 13, 18] , for instance. In section 2 we
establish some specific properties of this theory, in locally convex spaces, that we
need later.

In section 4 we apply this distributional point of view of the theory of fractional
powers of —A to the study of the Riesz potentials. Given a complex number « such
that 0 < Rea < %, the Riesz potential R, acting on a locally integrable on R™
function f is defined by

(Raf) )~ i) / =y f(w)dy

o an/292ar (Oé)
whenever this convolution exists. This always happens if f € L?, 1 < p < 55—,
since the function
Vo () = 27" 2 €R", 2 #0,
belongs to L' + L4, for e < g < oo
If we take the Fourier transform of the Riesz potential R,, 0 < Rea < g, we

find that
(Raf)" (2) = (27 [2) > F (2) for f € S.

A
On the other hand, since ((—A) £)" (z) = (27 |#])? f (x) , it is natural to think that
a ”"good” definition of the fractional power of (—A) has to satisfy

« A 2c¢ A
(=2)" 1) () = @r |2))™ f (2)
for f € S and Rea #£ 0. For this reason it is usual to identify the operator R, with
the fractional power (—A)~%. However, the identity Rof = (—A)™" f has been
only proved for f € S and therefore, the identity R, = (—A)™“ (as operators in
L?) has only a ”formal” meaning.

In this paper we study the operator (—A)™ " in the context of the classical theory
of fractional powers and we obtain a relationship between this operator and R, in
the context of the duality (7,7").

As a consequence of this we deduce some interesting properties of the operator
[Re] P Moreover, our distributional point of view of Riesz potentials allow us to
obtain some properties of R, in other spaces.

Finally, we introduce the operator B, , € > 0, given by

Boeh) 0) = o [ ([ e F e a) so - ay

which is similar to the Bessel potential (where ¢ = 1). We prove that

s— lim [B,,c]

e—0t P

7
=|R.], ,1 .
[ ]p <p<2Rea

2. PREVIOUS RESULTS ON FRACTIONAL POWERS

In this section, X will be a sequentially complete locally convex space endowed
with a directed lamily ol seminorms 3. The [ollowing delinition was introduced in

13].
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Definition 2.1. We say that a closed linear operator A: D (A) C X — X is non-
negative if |—o0, 0] is contained in the resolvent set p (A) and the set {)\ (M A)fl DA > O}

is equicontinuous, i.e., if for all p € P there is a seminorm pgy (p) € P and a con-
stant M = M(A,p) > 0 such that

p(A(A+A)*1x> < Mpo(z) ,A>0, zeX.

We denote by D(A) the domain of A and by R(A) the range of A. From now on,
«a will be a complex number such that Rea > 0.
It is not hard to show that if A is a non-negative operator then

(1) lir(r)l+ A" [(A + u)fl]ngc =z ,forze R(A)and n e N.

w—
Consequently, R (A) = R(A™). This identity can be extended to exponents « € C,
Rea > 0.

Lemma 2.1. The identity

R(A)=R(A®), Rea>0
holds.

Proof. Tt is known (see [8] and [12]) that if 0 < Rea < n, n integer, then the
fractional power A® is given by

Q.. F(TL) > a—1 -1 v n
2) A:c_m/o A [(A+A) A} zd\, z€D(AY).

Moreover, in [12, Theorem 4.1] we proved that
D(A%) = {x EX:AY1+A)"ze D(A")}
and

(3) A% =(1+A)"A*(1+A) "z, for x € D(AY).

From (2) it follows that R (A“ [(1 + A)flr) C R(A). Hence, by (3) we conclude
that R (A%) C R(A).
Oun the other hand, by additivity (see [13]) we find that R(A%*) > R(A™) and

consequently R (A®) = R(A). 1

Remark 2.1. Balakrishnan and Komatsu defined the fractional power of exponent
a of A as the closure of the operator given by (2). Therefore, the range of this
fractional power is included in D(A) N R(A), which is a proper subspace of R(A)
if D(A) is non-dense. So, the property given in the previous lemma is a specific

property of the concept of fractional power given by the authors in [11, 13].

From (1) one deduces that if R (A) is dense, then A is one-to-one. Moreover, the
operator Ag has dense range in R (A) (we write Ag instead of Agrzy). As Ag is

non-negative in R (A) (duc to the fact that (A + A)™" (M) C R(A), A>0), it
easily follows that Ap is one-to-one. It is also evident that if A is a one-to-one, non-
negative operator (with non necessarily dense range), then A~ is non-negative. In
this case, the fractional power A~ is given by A= = (A_l)a. This operator,
A~ is closed since A% also is (see [12]).
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Definition 2.2. Given n > Rea >0, x = A"y € R(A™), y € D (A"), we define

I (n) > n—a—1 —-n T
—F(a)F(n—a)/o A (A+A) dA.

From (2) one deduces that A_,A"y = A" “y. Moreover, with the change
XA — A 1in (4), it is very easy to show that if A is one-to-one, then A_ o = A~ %z,
for x € R(A™). In this case, A* is one-to-one and
(5) (A t=4m

That is because A*A™%x = z, for x € R(A") and A~*A% = z, for x € D (A™).
By (3) these identities also hold for € D (A™®) and z € D (A®), respectively.

4) A jx=

Proposition 2.2. A_, is closable and its closure is given by
(6) Ao =(Ar)""

Consequently, if A is one-to-one, then A™% is an extension of A_.. The ideniity

A= A_, holds if and only if R(A) is dense.
Proof. Given z = A"y € R(A™) and p > 0 we get
A(p+A) Az = A_A(pu+A) 'x
= (Ap)_,Alp+4) "z
= (An) A+ A) e

and taking limits as p — 0, as (Ag) “ is closed, we conclude that z € D [(AR)fa]

and (Agr)"“x = A_,x. Hence, A_,, is closable and (Ag) ™" is an extension of A_,.

Let now x € D [(AR)_O‘] and p > 0. As A" (A+p) "z € R[(AR)"] it follows
that

A" (u+ A7 (AR) e = (AR) AT (u+A)
= A A" (u+A) "z

and taking limits as u — 0 we conclude that x € D (A__a) and A_,x = (Agp) " x.
This proves (6).

If A is one-to-one and R (A) is not dense, by choosing « ¢ R (A), it is evident that
(A=1)" (A7 +1) "2 ¢ R(A). By additivity one deduces that A=*A~"*+* (A +1) "z ¢
R(A). Consequently, A~ is a proper extension of (Az)"". 1

From (1) it is easy to show that if € R(A), then

(7) lim p"(A+p) "2 =0.
MHOJF
This result can be improved in this way:

Proposition 2.3. The operators A® (u+ A)™" and p*(u+ A)™ are uniformly
bounded for p > 0. Moreover, given x € X, the following assertions are equivalent:

(i) z € R(A).

i) lim u® (u+ A)™x = 0.

(n)uggﬂ (p+A) " 2z=0

(iii) lim A% (u+ A) %z = .
N*}0+
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[e4

Proof. Let us first note that as (A + ) ' is bounded, then so does (A + p) .
Morcover, since D [(A + u)¥] = D (A%) (sce [13]) one deduces that D (A“ (n+ A)f(X) =
X

By additivity, we can restrict the proof of the first assertion to the case 0 <
Rea < 1. In this case, given p € B, as

(8) (w1 A) “z= Sm:m/ ANl A ledy e Cc X
0

we find that

) p [(MJr A~ :Z?] < p~Relc(a)Mpo (z) , x € X.

Hence, the operators u® (+ A)™%, p > 0, are uniformly bounded. In a similar
way, from (2), n = 1, one deduces that the operator A% — (i + A) can be extended
to a bounded operator, T, on X which satisfies:

(10) p(Tx) < pR "k (M, a)p1 (x), x € X and p; € P.
From (9) and (10) it follows that

(11) A (p+ A7 =1 = (A = (u+ A (g + A7, 1 >0,
are uniformly bounded.

Let us now prove that (iii) implies (i). It is evident that (iii) implies that = €

R(A*) = R(A), according to Lemma 2.1.
To prove that (i) implies (ii) let us suppose that # = Ay € R(A) and that
0 < Rea < 1. From (8) we obtain that

(12) p G+ 4) " w] < hol@)Myo (2) + (@) (M +1)p2 (4),

where pg, p2 € P.
Therefore, lim+,uo‘ (p+A) %2 = 0. As p®(u+ A)™" are uniformly bounded
u—0

for p > 0, by additivity, this property also holds for € R(A) and Rea > 1.
Let us finally prove that (ii) implies (iii). If 0 < Rea < 1, by applying the
operator 1= (u+ A) ' we find that lirél+u (u+A) 'z = 0. Therefore z €
H—

R(A), since v = A(p+A) "o+ p(u+A) 'z By (11), (12) and (10) it easily
follows that (iii) holds for z € R(A) and by density this property also holds for

x € R(A). Finally, if Rea > 1 we take m € N such that § = Re £ < 1 and from

A (p+A) "z —a= |1+ Z Aj‘B(,quA)_jﬁ [A‘B(pqLA)_ﬁ:z:f:U]

1<j<m—1

one deduces that 1ir(1]1+A“ (u+A) “z==z1

Proposition 2.4. The operator A_, satisfies

(13) s— lim (A+p) " =4_,.
p—0+
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Proof. Let us denote by T' = s — lim,,_,o+ (A4 p)”~. If # € D(T), then
Ii *(A r=0
Mg;u( )

and, by Proposition 2.3 we conclude that 2z € R (A). Also by Proposition 2.3, taking

into account that R (A4) = R(Ag) and (Ag+p) "2 = (A+ )~ 2, we have
lim (Ar)™ (Ag+pu) “z=u2z.

u—0t
Therefore, as (Ag)” is closed, we deduce that Tz € D [(Ag)?] and (Ag)* Tx = z.
Hence, by (5) it follows that z € D [(AR)fa = A,a} and A_qr =Twx.

Conversely, if z € D (A_,) then z = (Ag)"y, fory € D[(Ag)®]. By Proposition
2.3 we obtain

lim (A+p) 2= lim (A T (AR) Y =y.
Jim, (A p) e = lim (Ar ) (AR) Y =y

Therefore, x € D (T) and the proof is complete. i

According to [3], if A has dense domain and range and 7 € R, the imaginary
power A*" is the closure of the closable operator

(14) Az = ATy x = Ay € D(A) N R(A).
It is evident that A and (A + 1) commute.

Proposition 2.5. Let A be a non-negative operator with dense domain and range
and 7 € R. Then A®tY is an extension of AT A%,

Proof. Let n > Rea be a positive integer. Given z € D(A®) such that A%z €
D(A"), by (14) and additivity we have
AA+1D)TATAY = ATAA*(A+1)"z
= AYTAYA+ D)2
AATT(A+ 1) "
and, as A is one-to-one,
(A+1) " ATA% = AT (A+1) "z
The identity (3) now implies that @ € D(A%T"") and A*T7x = AT A%z. |
As a straightforward consequence of this proposition we find that if AT s
bounded, then D(AY+T) = D(A%).

We conclude this section with a result which states that the restriction to sub-
spaces commutes with the fractional powers.

Proposition 2.6. Let Y be a sequentially complete locally convex space and A :
D(A) CY — Y be a non-negative operator. Let X C Y be a linear subspace of Y
with the same topological properties of Y (but not necessarily a topological subspace
of Y ) and let us suppose that the restricted operator Ax is non-negative in X. If
there exists a positive integer n > Re « such that

(15) A% = (Ax)“x, for allz € D[(Ax)"],
then.
(16) [A%]x = (Ax)" .
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In particular, if we suppose that the topology of X satisfies the following property:

(p): If (zn),ex C X converges, in the topology of X, to x¢ and also converges
in the induced topology by Y to x1, then xg = x1.

Then (16) holds.

Proof. 1t is evident that (1 + Ax) ™z = (1 + A) "z, for all x € X. Therefore,
given z € D ([A%] ) we have

(Ax)*(1+Ax) "2 =A1+A) "z =(1+ A) A,

Taking into account that A%z € X one deduces that (Ax)“ (1 + Ax) ™"z €
DI[(Ax)"]. Hence, by (3) we conclude that x € D [(Ax)"] and (Ax)" z = A%z.
In a similar way, given z € D [(Ax)"], as

AYL+ A) " = (Ax)* (1+ Ax) "z = (1 + Ax) ™ (Ax)% @

it follows easily that z € D (A®) and A% = (Ax)" z € X.
If X satisfies the property (p), then it is evident that (15) holds. Therefore (16)
also holds. I

3. DISTRIBUTIONAL FRACTIONAL POWERS OF —A

From now on, if Y is a vectorial space included in the general space of distrib-
utions, we will denote by Ay the restriction to Y of the distributional Laplacean,
i.e., Ay will be the operator defined on the domain

D(Ay)={ueY:AueY}
as Ayu = Au, for u e D(Ay). 'Y = P, we will write A, instead of Aps.
Proposition 3.1. Neither —Ap nor —As are non-negative.

Proof. Let ¢ : R™ — ]0,00[, ¢ € D, non-identically vanishing. Given A > 0, if the
operator A — Ap : D — D was surjective, the function

(A—Ap) ™" (/5] (x) = /] Y (Ky % ¢) (z) dt

- ( [Feome dt) b () dy

would vanish outside a compact set. However, for all 2 € R™ this function is positive
and therefore (A — Ap) ' ¢ ¢ Cg°. Here we have denoted by K, the heat kernel,
ie.,
1 —|a|2 /4t n
Kt(a: :—n/2€ ,JTER ,t>0
(4mt)
On the other hand, also by means of the Fourier transform, it is very easy to
show that, for A > 0 , the operator A — Ag : § — § is bijective and its inverse
(A—Ag) ' is continuous. Moreover, if ¢ € S and = € R™ then

1 A

A—As) ¢ (z)= )\—5—4—772\a:|2¢(x)'
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Consequently, if —Ags was a non-negative operator, given « € C such that 0 <
Rea < 1, by (2) we would obtain

(-As)* ¢ () = (Sm‘” / TN (—As) (A - As) g dA)A ()

™

sin a7

- Am a5 (- As) ) " @) dr

sinar [ 472 |z A
= / )\“*1% d\ | ¢ (z)
m 0 A+ 47?2 |z
a A
= (42 a") b (@),
where we have used the fact that the Fourier transform is a continuous operator

from S to itself and that the convergence in the usual topology of § implies uniform
convergence.

a A
Therefore, the function (47r2 \x\2> ¢ (z) would belong to S, which in general, is
not truc. i

This proposition justifies the introduction of a new space, to study the Laplacean,
instead of the spaces D or S.

Definition 3.1. We denote by T the space of functions ¢ : R® — C of class C*
such that any partial derivative belongs to L' N L. We endow this space with the
natural topology defined by the seminorms

8], = maz {||D%¢]|,, |P°¢|| . BN, |8 <m},pc T, meN.

Remark 3.1. [t is very easy to show that T endowed with the increasing countable
family of seminorms {|-|,, : m € N} is a Fréchet space. However, this space is non-
normable. If it was normable, there would be an index mg and a constant ky,, > 0
such that |@|,, 1 < kmyg |Pl,,, for all ¢ € T. Thus, if we take a multi-index 3 such
that |8] = mg + 1 and a function ¢ € T with D%y non-identically vanishing, for
P (x) =9 (re) (r > 1 constant) we have

’I“mo-i-l ||Dﬁ1/)||oo — ||Dﬁ(/)||oo < kn’m ‘¢|m0 < k7n07‘7n0 ‘1/)‘

17

mo ’

and taking limits when r — oo we conclude that ||DB1/)||OO = 0, which is a contra-
diction.

Remark 3.2. It is evident that T C LP (1 < p < o0) and also that S C T. More-
over, it is very easy to show that the induced topology of S is weaker than the usual
topology of this space, and that D is dense in (T, ||, , m € N). It is also easy to
prove that, for all multi-index (3, im0 DPp(x) =0 forpecT.

Lemma 3.2. If f € LP (1 < p < o) and ¢ € T, then the convolution f * ¢ exists,
belongs to C™ and satisfies that D® (f x ¢) = fx DP¢, for all multi-index 5. In
particular, the convolution Ra¢ = 1, *¢ is well-defined if 0 < Rea < § and p € T.
Moreover, Rop € C°. If f € L1, then f+ ¢ € T and the operator ¢ — f * ¢ is
continuous in T .

Proof. The proof of this result is an immediate consequence of the Holder and
the Young inequalities. The convolution R,¢ = v, * ¢ exists since the function
Y, can be decomposed as: ¥, = p, + Vo, Where p, = ¥oXp0,1) € Lt (XB(0,1)
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denotes the characteristic function of the ball of radius 1, centered at the origin)
and vo =V, — g € LY, —5r7-o <qg< oo |

Theorem 3.3. The operator Ax, restriction to the space T of the Laplacean, is
continuous and it is also the infinitesimal generator of the heat semigroup, which is
a contractive semigroup of class Cy. Consequently, — Az is a non-negative operator.

Proof. Tt is evident that A7 is continuous. On the other hand, as K; € L' and
|K¢||; = 1, from the preceding lemma one deduces that P, = K, ¢ € T, for all
¢ €T, and

‘Ptd)|m < HKtH1 M"m = |d)‘7n ,m=0,1,2,..

Now, by the approximations to the identity theorem we conclude that 7-lim;_,q P =
.

A simple calculation shows that, for £ > 0, s > 0,
PPp=K;x(Kgxp)=(K;xK)xp=Kiysxp=Prisp.

Hence, we conclude that {F; : ¢ > 0} is a contractive semigroup of class Cp.
Let A be its infinitesimal generator. We shall prove that A = Az. Given tg > 0
and ¢ € D (A) we have

T —lim [6 " (P y56 = Pruh) — Py Ad] = 0

and hence 5
‘ t=t
81 0

On the other hand, as the function u(z,t) = (P¢) (x) is a solution of the heat
equation,

[(Po) (x)] = (P, Ad) (x) , for all z € R™.

% li=ty [(£20) (2)] — (AP, ¢) () — (P Ad) () -

So, we deduce that P ,A¢p = P, Ap, and taking limits when t; — 0 we conclude
that A¢ = Agp.

In a similar way as in Banach spaces, it is not hard to show (see [20, Th. 1,
p- 240]) that if A is the infinitesimal generator of an equicontinuous semigroup of
class Cp, then —A is a non-negative operator.

Finally, we shall prove that D(A) = 7. To do this it is sufficient to prove that
1 — A7 is a one-to-one operator. In effect: for every ¢ € T there exists ¢ € D (A)
such that (1 — A)¥ = (1 — A7) ¢, since 1 — A is surjective, due to the fact that
— A is non-negative. Since ¢y € D (4),

1-A)Yp=01-Ar)v=(1-A7)¢

and as 1 — A7 is one-to-one we conclude that ¢ = ¢ € D (A).
To prove that 1 — A7 is a one-to-one operator it is sufficient to take Fourier
transforms since, if (1 — A7) ¢ = 0 then

(=26 () = (1+ 42 o) é(2) =0, for all = € R

A
and hence ¢ = 0, that implies ¢ = 0. i
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Remark 3.3. By means of Fourier transforms it is also very easy to show that Ar
is a one-to-one operator. However, this operator has non-dense range. To prove
this, let us consider the linear form u : ¢ — fR,,, ¢ () dx which is continuous and
non-identically vanishing. However, (u, A¢) =0 for all p € T, due to the density
of DinT.

Let us now consider the topological dual space of 7 that we shall denote by 7°.
Note that as the topology that 7 induces on § is weaker than the usual topology of
this space, we find that if w € 7’ then u can be identified as a tempered distribution.
Moreover, as S is dense in 7, u is completely determined by its restriction to the
space S.

We endow 7" with the topology of uniform convergence on bounded sets of 7,
i.e., the topology defined by the seminorms

|u| g = sup |(u, P)| ,ucT' ., BCT abounded set.
bEB

In 77 the two main requirements that we need hold: the negative of the Laplacean
is a non-negative operator and the spaces L? (1 < p < o) are included in 77.

Remark 3.4. Since T is non-normable, no countable family of bounded sets exists
such that every bounded set in T is contained in this family. Hence, T' is non-
metrizable. However, by the Banach-Steinhaus theorem (see [16, p. 86]), this space
is sequentially complete. So, we have a non-trivial example of a sequentially com-
plete locally conver space where it will be very useful to apply the theory of fractional
powers developed in [12, 13].

Proposition 3.4. For all 1 < p < oo, LP C T’ and the induced topology of LP is
weaker than the usual topology of this space.

Proof. Let us consider f € LP, B C 7T a bounded set and let us denote by
k= sup {[[¢l,, ¢}
ocB

which is finite since B is a bounded set. From the Holder inequality, if ¢ is the
conjugate exponent of p, it follows that

[ T@ @) daf < s |loll,. 11,] < kI,

and thus f € 7/ and\f|3§k|\f\|p. ]

sup
$EB

Derivation and convolution in 7’. Given u € 7’ and 3 a multi-index, the
distributional derivative D%y can be extended to an element (that we also denote
by D?u) that belongs to the dual space 7’ and which is defined by

(D°u,6) = (w,(-1)" D) , 6 €T,
In particular, the Laplacean operator in 7', A7, acts as
(AT’ua(/)) = (’U/,Ad)) s d) eT.

For the convolution, given f € L' and u € 7', we define the convolution u * f
as the linear form

b — (u,?m) L peT,
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where }(x) = f(—z). From Lemma 3.2 it follows that u* f € 7".

Theorem 3.5. —A7: is a continuous and non-negative operator but it is not a
one-to-one operator.

Proof. Given B C T, a bounded set, and u € 7', as the set E = {A¢: ¢ € B} is

also bounded, from

|Ariulp = sup [(Aziu, @) = sup |(u, Ad)| = [ul
$eB $eB

it follows that Az is continuous.
Let us now consider A > 0 and v € 7'. It is very easy to prove that the

linear form v : ¢ (u, A Ap)7! 1/)) is continuous and that (A  Agr)v = w.

Therefore, A — A/ is surjective.
On the other hand, let uw € 7’ such that (A — Az)u =0. Then, if p € T

(()‘ - AT') U, (/)) = (u7 ()‘ - AT) d)) = 0;
and thus (as R (A — A7) = T, due to the fact that —A7 is a non-negative operator)
u = 0.

If we take a bounded set, B C 7, and u € 7T’, since —Ar is a non-negative
operator, the set F' = {p (n— AT)_l p:pe B, u> O} is also bounded and thus,
for A > 0,

’)\ (A=At u’B = sup ‘ ()\ A= Ar) (/)) |

bEB
= sup [(w A AN T )| <l
bEB

We now conclude that —Az: is a non-negative operator.
Finally, as the constant functions belong to the space 7’ and obviously their
Laplacean is null we find that A7 is not a one-to-one operator. |

In the next theorem we point out a dual relationship between the operators
(=A7)" and (—A7)".
Theorem 3.6. If g€ T, u €T’ and Rea > 0, then the duality formula
(A7) u,¢) = (u, (A7)" ¢)
holds.

Proof. Let m > Rea > 0 be a positive integer, ¢ € 7 and u € 7’. Since Az is
continuous

SO carrun = ([T [can oo an ] e o)

:/ (r= AT,)(A—AT,)*l]mu,(ﬁ) X

0

_ /OO (wx [ ane an ] e) o

0

_ <u /OOOA“ —Ar) (A= Ap)™ l]mmm)
r(

-ty )<u7 (~Ar)"9),

(m)
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where the first and the last identity follow from (2), the second one is a consequence
of the fact that the convergence in 7’ implies weak convergence; the third one can
be justified by the duality relations between (A — A7) ' and (A— A7) ' and,
finally, the fourth one is an immediate consequence of the continuity of u. |

4. RIESZ POTEXNTIALS

In this section we shall obtain a relationship between the Riesz potentials and
the fractional powers of the negative of the Laplacean operator in the spaces 7 and
7'. As a consequence of this, we shall deduce some interesting properties of the
operator R,.

Lemma 4.1. If0 <Rea < 5 and ¢ € T, then
(17) (A7) ¢ = Ra (-A)" ¢ = (—A)" Rad.

Proof. By applying (2)
( Ar)"%¢= %/0 P [(A AT)*}"( A7) ¢ dA.

On the other hand, as (A — A7) ' is the Laplace transform of the heat semi-
group, P, it easily follows (see [20, p. 242]) that

[(A*AT)il}nQﬁ:ﬁ/o tn_1€_>\t (Kt*’l/))dt ,’(/167

If ¢y = (—A7)" ¢, as the 7-convergence implies pointwise-convergence

(Can™e¢) @

_ m /0 et ( /0 T e (K 5 ) (:c)dt) A,

for all z € R™, where, if we interchange the order of integration
_ 1 oo
S ) =—— t* (K, dt,
(CAr ™ 6) @ = g [ 7 )@
since ﬁfooo Ao le=M gy — ten Note that we can apply the Tonelli-
Hobson theorem due to 0 < Rea < § and

1
(K ) ()] < 1Kl o 9] = (a2 1l -

(Ko x ) ()] < [[Kelly [¥] o0 = 19 -

Tn a similar fashion

/ T (K ) () e = L ( / T () dt) ¥ (@ — ) dy,

0 0
since
: Lo
a—1 -~ \2 =/ 2cc—n
/0 K (y) dt = —e—m T

This proves the first identity. The second one follows from Lemma 3.2. |

It is known that if 1 < p < oo, then —A, is non-negative, with dense domain
and range.
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Proposition 4.2. If1 <p < 554+, then Rof € R(Ag/) for oll f € LP. Moreover

(18) (A7) f = (=A)" Raf.

Proof. Let us first prove that L? C R(Az:), 1 < p < co.
If 1 < p < o0, we know that LP is the LP —closure of R (A,) which by Proposition

3.4 is included in the 7’'—closure. Thus, L? C R(Ax/). Moreover, as L? is dense
in L! one also deduces that L' ¢ R (Ar).

Let f € L?. By means of the Young inequality, the condition 1 < p < sg—
implies that R, f can be decomposed as: Ro.f =g+ h, g€ [P ,he L andr >0
such that L < % — 2Bea Therefore Rof € R(Ar).

By Theorem 3.6 and (17), the proof of (18) can be reduced to prove that given
f € LP, then

/ (Raf) @)0()dr = | () (Ra) (2)dr, for all € T

R

and this identity easily follows from the Tonelli-Hobson theorem. Jj

In the following result, A g denotes the restriction of the distributional Laplacean

to R (AT’)
Theorem 4.3. If 1 <p < 57—, then LP C D [FAR)_Q] and
(19) (=AR)™“f=Ruf, forall f e LP.

Proof. Let f € LP. By applying (A —A7/)™" (A > 0) to both sides of (18) and
taking into account that (—Az/)"™" commutes with this operator we obtain
A=A7) " (CAR)"T = (CAD)_(CAT) (A=A f
= (A=A7) " (-A7)" Raf.
Since f and R, f belong to m, taking limits as A — 0 we conclude that
feb ((*AT'),Q) and (—Az/)__f = Rof. Finally, from (6) onc deduces (19). 1

Corollary 4.4 (Additivity). If Rea >0, Ref8 > 0, Re(a+ ) < 35, then
(20) RsRuf = Raiof » for all f € TP

Proof. Let f € LP. The existence of R, gf and R, f is evident. Moreover, from
Theorem 4.3 one deduces that R, f = (—Agr)™ " f and Ry . gf = (—AR)_a_ﬁ 7
As we have already seen in the proof of Proposition 4.2, R.f = g+ h, g € LP

and h € L”, for all r > 0 such that % < % — 2Bea Tt g clear that Rgg exists and,

n
if we take 2 > % also exists Rgh. Hence, there exists RgR. f.

Theorem 4.3 implies that RgR.f = (—A R)_ﬁ R, f- From the additivity of the
fractional powers we now deduce (20). I

Corollary 4.5. Let X C L' + L? (1 < p < o0) be a sequentially complete locally
convex space which satisfies property (p) in Proposition 2.6 with Y = T’. Then, if
the operator —Ax is non-negative, the identity

(21) (-Ax) “=[Ra]y ,0<Rea< %
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holds. In particular,
(22) (—Ap)™" = [Ra]

»-
Proof. This result is an immediate consequence of Theorem 4.3 and Proposition
2.6. 11
Remark 4.1. The identity (21) can be applied in some interesting spaces such as
X=L"+L%,1<r<s<p

with its usual norm, or

X={fel"+L" :Afel™+L”} ,1<ry;<s;<p, k=12
with the graph norm.

Another consequence of (21) is that R, is one-to-one in L' + LP.

As a consequence of the gencral propertics of the fractional powers of —A, we
deduce the following results:

Corollary 4.6. The following properties hold:
(i): If o, 8 € C such that 0 < Rea < Ref < %, then

D ({R@]p) cD ([Ra]p> .

(ii): If1 <p < 55 and B € C such that Rea = Re 3, then

(23) D (IRal,) = D (IRdl, ).

Proof. The first assertion follows from (22) and the additivity of the fractional
pOwers.

Oun the other hand, it is known (see [15]) that if 1 < p < oo and 7 € R, then
(=A,)"7 is bounded. Therefore, from Proposition 2.5 one deduces (23). i

Following [7] we introduce the notion of w-sectoriality. Given w € ]0, 7], we say
that a closed linear operator A : D(A) C X — X is w-sectorial if the spectrum of
A satisfies that

o(A) C S, ={ze€C\{0}: |argz| < w} U {0}

and the operators z(z — A)~! are uniformly bounded for z ¢ S,. Kato and Hille

proved (see [6, p. 384] and [7]) that if A is w-sectorial, 0 < w < Z, then —A
is the infinitesimal generator of an analytic semigroup of amplitude 5 — w. Con-
versely, if {T'(z) : z € S\ {0}} , 0 <7 < %, is an analytic semigroup and —A is its
infinitesimal generator, then A is ( Z—T+ 5) -sectorial, for 0 < e < 7.

It is known (see [2]) that if 1 < p < oo, then the operator A,, is the infinitesimal
generator of the heat semigroup, which is analytic. Hence, —A, is (% -6+ 5)—
sectorial, for 6 = arctan i and 0 <& < 6. If 1 < p < 00, by means of the Mihlin

multiplier theorem it can be proved (see [15]) that —A,, is e-sectorial for all € > 0.

Corollary 4.7 (Sectoriality). If 1 < p < oo and 0 < a < 3=, then [Ra], is
e—sectorial for all € > 0. Moreover

o (1Ral,) = [0,00].

Consequently, — [Ra]p is the infinitesimal generator of an analytic semigroup of
amplitude 3.
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Ifo<e<d= arctan% and 0 < a < min{%,
non-negative operator.

m}, then — [Ra], is @

Proof. It is known (see [7, Th. 2]) that if A is w—sectorial and 0 < o < Z, then A® is

aw—sectorial. On the other hand, from the identity z (z + A)™' = A (271 + A) it

follows that if A is a one-to-one, w—sectorial operator, then A~ is also w—sectorial.
Hence, by (22) we deduce the properties of sectoriality of [R,] b
The identity o ([Ra}p

theorem for fractional powers (see, for instance [12]). Finally, from [7] one deduces
that —[R] » is the infinitesimal generator of an analytic semigroup of amplitude

51

Remark 4.2. Note that —[R,], does not generate any strongly Co—semigroup
since its domain is not dense.

) = [0, 00] follows from (22) and the spectral mapping

Corollary 4.8 (Multiplicativity). If1 <p < o0, 0 < a < 35 and 8 € C such that
0<aRef < 2—7;, then

(IR, = [Ral,

0 <ac< min{ﬂ +} and 8 € C such that

If0 < e < § = arctan = 2 7/2—57e

ne ’
0<aRepB < g, then

([Raly)® = [Ras),

Proof. The proof is an immediate consequence of (22) and the multiplicativity of
the fractional powers (see, for instance [19] and [14]). I

Given o € € and ¢ > 0 we consider the function

1 C _me? oy
Go = et gt R™ 0.
e () (477)0‘1“(04)/0 e" T e , T E , £

AN
It is easy to check that G,. € L' and that its Fourier transform is G (z) =

—
(5 + 472 |$\2> (see, for instance [17, p. 131)).
The Bessel potential of degree a acting on a locally integrable on R” function
f is defined by the convolution B, .f = Ga,. * f, if this convolution exists. As a
consequence of the Young inequality, the operator

[Bael,: LP — LP
o= Gaexf

is bounded.

Theorem 4.9. If 1 <p < oo, e >0 and Rea > 0, then
(e — Ap)_a = [Bal, -

P
Moreover, if 1 < p < 55—, then

2Rea’

(24) s— lim [Bg ]

e—0t P

= [Ra]

p-

The operator [Ry], is a proper extension of s —lim. g+ [Bae), -
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Proof. By means of Fourier transforms

N AN 9 2 —a A
(25) [(5 —A,) f} (x) = (5 + 47° |z ) f(x) ,ae. zeR” fed.
Since (e — Ap)” " and [Bac|, are both bounded, by density, from (25) one deduces

that (e — Ap)™* = [Ba,|, -

p
Finally, (24) is an immediate consequence of Propositions 2.2 and 2.4, taking

into account (22). I
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