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Abstract

We prove a local existence result for the manoeuvrability control of a submarine. The problem is
formulated as an optimal control problem with a nonlinear and highly coupled system of ODEs for
the state law, a Lagrange type cost function, and nonlinear controls which take values on a convex
and compact subset of R

3
. Finally, the existence of solution for this problem is obtained by applying

a recent general existence result (see [P. Pedregal and J. Tiago, Existence results for optimal control
problems with some special non-linear dependence on state and control, SIAM J. Control Opt., 48
n.2 (2009) 415-437]) which, however, requires some modifications to be used in our specific case.
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1 Introduction

In this paper we turn over the existence of solution for the model of manoeuvrability control of a
submarine which has been recently proposed in [1] (see also [2, 3, 4]). It corresponds to a real-life
engineering problem so that all the hypotheses and ingredients that we will consider in the sequel are
motivated by real (non-academic) requirements. To describe such model a state vector is defined

x = (x, y, z, φ, θ, ψ, u, v, w, p, q, r) ∈ Ω ⊂ R
12, (1)

where Xworld = (x, y, z;φ, θ, ψ) indicates the position and orientation of the submarine in the world fixed
coordinate system, and Vbody = (u, v, w; p, q, r) is the vector of linear and angular velocities measured in
the body coordinate system. Throughout this paper we follow the usual SNAME notation [2]. Permitted
ranges of Euler angles are

−π < φ < π, −
π

2
< θ <

π

2
, 0 < ψ < 2π, (2)

so that
Ω = R

3 × ]−π, π[ ×
]

−
π

2
,
π

2

[

× ]−0, 2π[ × R
6.

The control vector is
u = (δb, δs, δr) , (3)

where δb and δs represent, respectively, the angle of the bow and stern coupled planes, and δr is deflection
of rudder. These controls act on the system in linear and quadratic form. Therefore, it is convenient to
consider the mapping

Φ (u) =
(

u,u2
)

≡
(

δb, δs, δr, δ
2
b , δ

2
s , δ

2
r

)

∈ R
6.
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Admissible controls u are measurable functions that should lie in a certain set K ⊂ R
3, which, in our

case, is given by
K = [−a1, a1] × [−a2, a2] × [−a3, a3] ,

with 0 < a1, a2, a3 < π/2. Finally, the state law is described by a system of twelve ordinary differential
equations

x′ (t) = Q (x (t))Φ (u (t)) +Q0 (x (t)) (4)

where
Q : R

12 → M12×6 and Q0 : R
12 → R

12

will be described in Section 3. At this point, we just indicate that the right-hand side of (4) includes
both kinematic and dynamic equations of motion (see [1, 2, 3, 4] for more details).

The manoeuvrability control problem for an underwater vehicle describes a situation where we want to
reach (or to be very close to) a final state xT in time T, while minimizing the use of control during the time
interval [0, T ] . Typically, this type of problem is formulated as an exact or approximate controllability
problem. However, in many real situations, there is no need for all the components of the state variable
to be close of a final target xT at time T , but only some of them (see [1] for some examples). Up
to the knowledge of the authors, there are no satisfactory results in the literature for these nonlinear
controllability problems in which controls appear in a nonlinear form. Notice also that if a controllability
problem has a solution, then such a solution may be obtained by using an optimal control formulation
as we propose below.

The requirement about the minimum use of control can be understood as minimizing the typical cost

∫ T

0

‖u (t)‖2
dt (5)

while the previous aspect on the final state xT can be seen as minimizing

1

2

∥

∥x (T )− xT
∥

∥

2
=

1

2

∫ T

0

d

dt

∥

∥x (t) − xT
∥

∥

2
dt+

1

2

∥

∥x (0) − xT
∥

∥

2

=

∫ T

0

< x (t) − xT , Q (x (t))Φ (u (t)) +Q0 (x (t)) > dt+
1

2

∥

∥x (0) − xT
∥

∥

2
.

Hence, we consider the cost

∫ T

0

[

< x (t) − xT , Q (x (t)) Φ (u (t)) +Q0 (x (t)) > + ‖u (t)‖2
]

dt

=

∫ T

0

[c (x (t)) Φ (u (t)) + c0 (x (t))] dt

where the vector c is given by

{

ci (x) =
∑12

j=1

(

x − xT
)

j
Qji, i = 1, 2, 3,

ci (x) =
∑12

j=1

(

x − xT
)

j
Qji + 1, i = 4, 5, 6,

and
c0 (x) =< x− xT , Q0 (x) > .

Notice that the above expression for vector c is a particular case of a more general expression

{

ĉi (x) =
∑12

j=1 αj

(

x − xT
)

j
Qji, i = 1, 2, 3,

ĉi (x) =
∑12

j=1 αj

(

x − xT
)

j
Qji + βi, i = 4, 5, 6,

where αj ≥ 0, 1 ≤ j ≤ 12, and βi ≥ 0, 4 ≤ i ≤ 6 correspond to some penalty parameters which are
introduced to weigh at convenience (5) and the fact that some components of the state vector being
close to a final given target at time T . For some interesting (at the practical point of view) choices of
these penalty parameters we refer to [1]. For simplicity and since it does not change mathematically the
problem, in the sequel we have taken those parameters equal to one.
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To sum up, we can write the manoeuvrability control problem as

(P)























Minimize in u :
∫ T

0 [c (x (t))Φ (u (t)) + c0 (x (t))] dt
subject to

x′ (t) = Q (x (t))Φ (u (t)) +Q0 (x (t)) , 0 < t < T
x (0) = x0 ∈ Ω
x (t) ∈ Ω and u (t) ∈ K, 0 ≤ t ≤ T.

The main goal of this paper is to prove the following local existence result.

Theorem 1.1. For T > 0, small enough, there exists an optimal solution of (P).

We notice that the constraint on T is imposed to be able to guarantee that the state law is well-posed.
The existence of T will be established during the proof of Theorem 1.1. As we will see later on, the
fundamental question for this existence result is the relation between the vector c, the matrix Q, the
mapping Φ and the set K. The role played by Q0 is related to the existence and uniqueness of solution
for the state law. As for the function c0, as we will see in the proof of Theorem 1.1, it does not play
an essential role. To prove Theorem 1.1 we will apply a very recent general existence result [5] which
requires some modifications to adapt the specific structure of our model. Section 2 is devoted to present
this general result (Theorem 2.1) with its corresponding changes. In Section 3 we will check that our
model satisfies the hypotheses required by this last theorem.

Finally, we would like to emphasize that although the problem addressed in this work comes from
an important real problem in naval industry, our main result is of theoretical type. The numerical
resolution of (P) is of a major importance for engineering applications. We do not consider here such
issue because it has already been considered in [1]. However, we should point out the importance of
supporting numerical simulations of (P) with the theoretical result Theorem 1.1.

2 A general existence result for some specific optimal control
problems

Throughout this section we follow the same ideas as in [5], but since our problem is slightly different
from the one considered there and to make the paper easier for readers we include detailed statements
and proofs.

To study the existence of solution for (P ) we will turn ourself over the general optimal control problem
of the type

(CP)























Minimize in u :
∫ T

0 [c (x (t)) · Φ (u (t)) + c0 (x (t))] dt
subject to

x′ (t) = Q (x (t))Φ (u (t)) +Q0 (x (t)) , 0 < t < T
x (0) = x0 ∈ R

N

u (t) ∈ K, 0 ≤ t ≤ T.

(6)

where K ⊂ R
M . The mappings

Φ(u) ∈ R
S , Q : R

N → MN×S, Q0 : R
N → R

N , c : R
N → R

S

should be such that the cost function is defined and takes finite values for admissible pairs (x,u) and
the state system is well-posed.

As we will see, the fundamental question for the existence result is the relation between the vector
c, the matrix Q, the application Φ and set K. For a better understanding of such relations we consider
additionally a C1 mapping

Ψ : RS → RS−M , Ψ = (ψ1, ..., ψS−M ), (S > M), (7)

so that Φ(K) ⊂ {Ψ = 0}. This means that we are embedding the image space Φ(K) into a level surface
(submanifold) defined by Ψ. Notice for example that for problem (P ) where

Φ(u) = (u1, u2, u3, (u1)
2, (u2)

2, (u3)
2) ∈ R

6

we have
Ψ(v) = ((v1)

2 − v4, (v2)
2 − v5, (v3)

2 − v6) ∈ R
3.
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Also we define for every pair (c,Q) the set

N (c,Q) =
{

v ∈ R
S : Qv = 0, c · v ≤ 0

}

. (8)

Similarly, we consider

N (K,Φ) =
(9){

v ∈ R
S : for each u ∈ K, either ∇Ψ(Φ(u)) · v = 0 or ∃i s. t. ∇ψi(Φ(u)) · v > 0

}

,

the set of ”growth directions” of Ψ over Φ(K). We are now in conditions to state the existence result
proved in [5] adapted to our frame.

Theorem 2.1. Assume that the mapping Ψ as above is component-wise convex and C1. If for each
x ∈ R

N , we have
N (c (x) , Q (x)) ⊂ N (K,Φ) , (10)

then the corresponding optimal control problem (CP) has at least one solution.

Remark 2.1. Notice that in the statement of Theorem 2.1, we have dropped the strictly convexity of Ψ
as it was asked in [5]. Also, we remark that it is sufficient to check condition (10) for all x ∈ Ω̄ ⊂ R

N

where Ω̄ is the set including all the possible solutions x of the initial value problem in (6) obtained for
any admissible control in K.

An essential tool to the proof of this result is the verification of the assumption

Assumption 2.1. With the same notations as above, denote by L = Φ(K) and let Λ = co(L) be the
convex hull of L. Assume that for each fixed x ∈ R

N and ξ ∈ Q(x)Λ +Q0(x) ⊂ R
N , any solution m̃ of

the problem






Minimize in m ∈ Λ : c(x) ·m+ c0(x)
subject to

ξ = Q(x)m+Q0(x)
(11)

satisfies m̃ ∈ L.

Figure 1: Illustration of Assumption 2.1 for the case N = M = 1, Φ = (u,u2) and K = [a1, a2].

This hypothesis has a very simple geometrical meaning, as we show in Figure 1 for the simple case
were N = M = 1, K = [a1, a2] and Φ(u) = (u,u2). The set L is part of the parameterized curve by Φ
and Λ is its convex hull. For simplicity, in this example the fixed ξ and x have been chosen in such a
way that Q0(x) and c0(x) are both nulls and {m ∈ Λ : ξ = Q(x)m} intersects L at the origin, precisely
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at m̃ = (0, 0). It is easy to see that for these x and ξ, the vectors c for which Assumption 2.1 is satisfied
are those such that

c(x) · m̂ > c(x) · m̃ = 0

for any m̂ ∈ {m ∈ Λ : ξ = Q(x)m}. Such condition is not satisfied, for example, for a vector c̄(x) such
that

c̄(x) · m̂ < c̄(x) · m̃ = 0.

This assumption allows us to proceed through a relaxation process using Young measures (as in
[5, 6, 7, 8, 9]) and conclude that there is a Dirac-type solution of the relaxed problem which corresponds
to a solution of the original problem.

Before starting the proof of the existence result, let us first consider the following Lemma.

Lemma 2.1. Let Ψ be as in Theorem 2.1. If c, Q, Φ and K in (CP ) are such that condition (10) is
satisfied, then Assumption 2.1 holds.

Proof. We want to see that for every fixed x ∈ R
N and ξ ∈ Q(x)Λ+Q0(x) the minimizer of c(x)·v+c0(x)

over the set of vectors v ∈ Λ verifying the restriction ξ = Q(x)v +Q0(x) can only be in L, where both
L and Λ are as in Assumption 2.1.

Suppose that v0 ∈ L and v1 ∈ Λ both belong to the manifold

{ξ = Q(x)v +Q0(x)}

but they verify
c(x)v1 + c0(x) ≤ c(x)v0 + c0(x).

As Ψ is component-wise convex and L ⊂ {Ψ = 0}, we have Λ = co(L) ⊂ {Ψ ≤ 0}. Hence,

Ψ(v0) = 0, Ψ(v1) ≤ 0, c · v1 ≤ c · v0, and Qv1 = Qv0 (= ξ −Q0).

Therefore it is obvious that v = v1−v0 ∈ N (c(x), Q(x)). Due to condition (10), v ∈ N (K,Φ). Accordingly
to the definition of N (K,Φ) either ∇ψi(v0)v > 0 for some i or ∇Ψ(v0)v = 0. Suppose we are in the first
situation. Because of the convexity of Ψ,

ψi(v1) − ψi(v0) −∇ψi(v0)v ≥ 0 ⇔

ψi(v1) ≥ ∇ψi(v0)v > 0.

But this is impossible because ψi(v1) > 0 cannot happen for a vector in Λ.
Suppose now that ∇Ψ(v0)v = 0. Again by convexity of each component of Ψ, we have

Ψ(v1) − Ψ(v0) −∇Ψ(v0)v ≥ 0,

that is,
0 = Ψ(v0) ≤ Ψ(v1) ≤ 0.

Hence, as v1 ∈ Λ = (Λ \ L) ∪ L and

Λ \ L ⊂ {Ψ(v) ≤ 0, ∃i s.t. , ψi(v) < 0}

we conclude that v1 ∈ L and Assumption 2.1 holds.

We can now prove Theorem 2.1.

Proof. We begin by the relaxation of (CP ) using Young measures associated with sequences of admissible
controls. Consider the problem

(RP ) Minimize in µ = {µt}t∈(0,T ) : Ĩ(µ) =

∫ T

0

[

∫

K

c(x(t)) · Φ(λ)dµt(λ)] + c0(x(t))dt

subject to

x′(t) =

∫

K

Q(x(t))Φ(λ)dµt(λ) +Q0(x(t))

and
supp(µt) ⊂ K, x(0) = x0 ∈ R

N .
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Notice that the theory of Young measures ([6, 7, 8, 9]) allows us to conclude that this formulation is, in
particular, well posed, as having u ∈ L∞([0, T ],K) for K bounded implies (see [10]) that the associated
Young measures {µt}t belongs to

Yp((0, T ), P (K)) =
{

µ = {µt}t∈(0,T ) :

∫ T

0

∫

K

‖λ‖pdµt(λ)dt <∞, µt ∈ P (K)

}

for every p > 1,

where P (K) is the space of probability measures supported in K. The existence of an optimal measure
for this problem is immediately established by applying the existence result in [6] for the particular case
where K is bounded.

In addition, (RP ) can be rewritten by taking advantage of the moment structure of the cost density
and the state equation. If we consider the set

Λ = {m ∈ R
S : m =

∫

K

Φ(λ)dν(λ), ν ∈ P (K)},

then for each Young measure µ = {µt}t we can associate a function in L∞([0, T ],Λ) given by

m(t) =

∫

K

Φ(λ)dµt(λ).

This relation is not one-to-one but we can also associate at least one Young measure to each function in
L∞([0, T ],Λ). The set Λ is very special. Indeed, notice that L defined above as L = Φ(K) is part of Λ
as it corresponds to generalized moments associated to Dirac-type Young measures. Moreover, in [11] it
was shown that when K is a compact and convex set we have

Λ = co(L) = co(L)

so that Λ is a convex, compact set, defined as

Λ = co(Φ(K)).

This considerations allow us to conclude that the relaxed problem (RP ) is equivalent to the optimal
control problem

(LP ) Minimize in m ∈ Λ :

∫ T

0

c(x(t)) ·m(t) + c0(x(t))dt

subject to
x′(t) = Q(x(t))m(t) +Q0(x(t)), x(0) = x0,

whose optimal solution (for the existence of such a solution see [12]) corresponds to a Young measure
which is an optimal solution (not necessarily unique) of (RP ). Next, we will characterize this optimal
solution, say m̃(.) of (LP ). To that purpose consider the function

ϕ(x, ξ) =

{

minm∈Λ{c(x) ·m+ c0(x) : ξ = Q(x)m+Q0(x)} if ξ ∈ Q(x)Λ +Q0(x)

+∞ else.

This density function is the typical integrand of the cost which defines the equivalent variational problem
(V P )

Minimize in x(t) :

∫ T

0

ϕ(x(t),x′(t))dt

subject to x(0) = x0, x(t) ∈ AC([0, T ],RN). The equivalence between problems (V P ) and (LP ) is
well known and can be found in [12, 13] and in more recent works under a similar framework [7, 14].
Accordingly, there is a solution for (V P ), let us say x̃(.), whose connection to m̃(.) is established through
the relation

ϕ(x̃(t), x̃′(t)) = min
m∈Λ

{c(x̃(t)) ·m(t) + c0(x̃(t) : x̃′(t) = Q(x̃(t))m(t) +Qo(x̃(t))}

= c(x̃(t)) · m̃(t) + c0(x̃(t)) a.e. t ∈ (0, T ).
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This means that for almost every t, m̃(t) is the minimizer of

{c(x̃(t)) ·m(t) + c0(x̃(t) : x̃′(t) = Q(x̃(t))m(t) +Qo(x̃(t))}.

By Lemma 2.1,
m̃(t) ∈ L = Φ(K)

so that there is a Dirac-type Young measure µ solution of (RP ), associated to m̃. As a consequence,
(CP ) has an optimal solution u ∈ L∞([0, T ],K) such that µ = {δ

u(t)}t∈(0,T ).

Remark 2.2. Note that if, in addition, Φ is component-wise one to one, convex and strictly convex
for at least one component over K, and c, c0 are such that the cost function in (LP ) is convex with
respect to m, then the solution of (CP) is unique. Indeed, suppose that u1(.) and u2(.) are different
optimal solutions of (CP ). Then µ1 = {δ

u1(t)}t and µ2 = {δ
u2(t)}t are optimal solutions of (RP ). As Φ

is component-wise one to one, the corresponding generalized moments defined by m1(t) = Φ(u1(t)) and
m2(t) = Φ(u2(t)) are different optimal solutions of (LP ). Hence, if the integrand in (LP ) is convex with
respect to m, then we have that m = λm1 + (1 − λ)m2, λ ∈]0, 1[, is also an optimal solution of (LP ),
and consequently m ∈ L. But since L = Φ(K) and Φ is strictly convex for some component i, m does
not belong to L. A contradiction. Therefore we must have u1 = u2. A very simple and interesting case
in which the cost function in (LP ) is convex corresponds to c and c0 constant functions.

3 Proof of Theorem 1.1

In this section we will apply the first part of Theorem 2.1 to the optimal control problem (P ). In fact,
some numerical simulations (see [1]) suggest that the solution of (P) is not unique. We proceed in several
steps:

3.1 Step 1: the matrices Q and Q0

We start by paying some attention to the matrices Q and Q0 of the control system, as it is fundamental
to verify the well-posedness character of the state law and condition (10) of Theorem 2.1. We recall the
notation introduced in Section 1 where we have set

x = (x, y, z, φ, θ, ψ, u, v, w, p, q, r) ∈ Ω ⊂ R
12,

with Xworld = (x, y, z;φ, θ, ψ) and Vbody = (u, v, w; p, q, r). Using this notation, accordingly to what we
have seen also in Section 1 and using the data in [1] we know that Q is given by

Q =

(

06×6

M−1F (Vbody)

)

where the matrix M is given by
M =

















m− ρ
2L

3X ′

u̇ 0 0 0 mZG −mYG

0 m− ρ
2L

3Y ′

v̇ 0 −mZG − ρ
2L

4Y ′

ṗ 0 mXG − ρ
2L

4Y ′

ṙ

0 0 0 m− ρ
2L

3Z ′

ẇ −mXG − ρ
2L

4Z ′

q̇ mYG

0 −mZG − ρ
2L

4K ′

v̇ mYG Ix − ρ
2L

5K ′

ṗ −Ixy −Ixz −
ρ
2L

5K ′

ṙ

mZG 0 −mXG − ρ
2L

4M ′

ẇ −Ixy Iy − ρ
2L

5M ′

q̇ −Iyz

−mYG mXG − ρ
2L

4Nv̇ 0 −Ixz −
ρ
2L

5N ′

ṗ −Iyz Iz − ρ
2L

5N ′

ṙ

















and F = (G, H) , G,H ∈ M6×3, with

G =

















0 0 0
0 0 ρ

2 l
2(Y ′

δr
+ Y ′

δrη(η − 1
C

)C)u2

ρ
2 l

2(Z ′

δb
)u2 ρ

2 l
2(Z ′

δs
+ Z ′

δsη(η − 1
C

)C)u2 0

0 0 ρ
2 l

3(K ′

δr
)u2

ρ
2 l

3(M ′

δb
)u2 ρ

2 l
3(M ′

δs
+M ′

δsη(η − 1
C

)C)u2 0

0 0 ρ
2 l

3(N ′

δr
+N ′

δrη(η − 1
C

)C)u2
















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and

H =

















ρ
2 l

2(X ′

δbδb
)u2 ρ

2 l
2(X ′

δsδs
)u2 ρ

2 l
2(X ′

δrδr
)u2

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

















.

Finally, considering the dimensionless hydrodynamic coefficients in [1, Appendix] we obtain

Q(x) = u2





















06×6

Q11 Q12 Q13 Q14 Q15 Q16

0 0 Q23 0 0 0
Q31 Q32 Q33 Q34 Q35 Q36

0 0 Q43 0 0 0
Q51 Q52 Q53 0 0 0
0 0 Q63 0 0 0





















= (x7)
2





















06×6

−0.0056307 −0.0056219 0.0002292 −0.0028418 −0.0011310 −0.0037067
0 0 −0.0001291 0 0 0

1.527832 1.4903911 −0.0617573 −0.0001656 −0.0000659 −0.0002160
0 0 0.0001049 0 0 0

−0.0162938 −0.0162684 0.0006631 0 0 0
0 0 −0.0002773 0 0 0





















. (12)

We remark that Q, the 12 × 6 matrix of the coefficients interacting with the control, only depends on
the surge velocity. Such particularity allows us to verify condition (10) quite easily, as we will see below.

As for Q0, it is given by

Q0 =

(

T (φ, θ, ψ)Vbody

M−1F0(Vbody , φ, θ, ψ)

)

∈ R
12,

where T is the transformation matrix in the kinematic equations

(Xworld)
′ = T (φ, θ, ψ)Vbody

defined by

T =





J1 (φ, θ, ψ) 03×3

03×3 J2 (φ, θ, ψ)





with

J1 (φ, θ, ψ) =





cosψ cos θ − sinψ cos θ + cosψ sin θ sinφ sinψ sinφ+ cosψ cosφ sin θ
sinψ cos θ cosψ cosφ+ sinφ sin θ sinψ − cosψ sinφ+ sin θ sinψ cosφ
− sin θ cos θ sinφ cos θ cosφ





and

J2 (φ, θ, ψ) =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ



 .

Concerning F0, it is defined in [1] through the ordinary differential system of six equations

MV ′

body = F0(Vbody, φ, θ, ψ) + F (Vbody)Φ(u)

so that it corresponds to the terms which do not depend on the controls. To obtain Q0 we write F0 with
the data given in [1] and multiply it by M−1, just as we have done for Q. Using the state notation

x = (xj), F̄0(x) = ((F̄0)j) = M−1F0(x), 1 ≤ j ≤ 6,

8



we obtain

(F̄0)1 = 0.21 sinx4 cosx5 +5.593x12 |x12|−10.68x2
12−7.234x11x12 +2.905x10x12−0.93x8x12 −0.11x7x12

−19.65x11 |x11|+ 5.658x2
11 + 0.015x10x11 − 1.809x9x11 + 0.61x7x11 + 7.252x10 |x10| − 0.4x2

10 + 0.14x9x10

−2.477x8x10 + 0.21x7x10 − 0.0085
√

x2
9 + x2

8 |x9| − 0.0022x7 |x9| − 0.0056x8

√

x2
9 + x2

8 + 0.0074x2
9

−0.015x8x9 − 0.022x7x9 + 0.012x8 |x8| + 0.22x2
8 + 0.013x7x8 − 0.0012x2

7 − 0.014x7 + 0.2

(F̄0)2 = 0.032 sinx4 cosx5 + 4.918x12 |x12| − 1.028x11x12 − 0.21x7x12 + 0.064x10x11 + 1.101x10 |x10|

+0.41x9x10 − 0.0073x7x10 − 0.023x8

√

x2
9 + x2

8 − 0.061x8x9 + 0.0017x8 |x8|

−0.01x7x8 + 2.4985× 10−7x2
7 − 5.6213× 10−5x7 + 0.0012

(F̄0)3 = −0.43 sinx5−57.56 sinx4 cosx5−1508.x12 |x12|+5212.x2
12+1951.x11x12+98.94x10x12+884.9x8x12

+30.0x7x12 + 5149.x11 |x11| + 108.1x2
11 − 4.058x10x11 − 0.047x9x11 − 166.7x7x11 − 1956.x10 |x10|

+107.8x2
10 − 38.2x9x10 + 667.5x8x10 − 57.7x7x10 + 2.215

√

x2
9 + x2

8 |x9| + 0.59x7 |x9| + 1.501x8

√

x2
9 + x2

8

+4.2833×10−4x2
9+3.913x8x9+6.062x7x9−3.109x8 |x8|−54.46x2

8−3.376x7x8+0.088x2
7+0.099x7−2.205

(F̄0)4 = −0.098 sinx4 cosx5 − 2.562x12 |x12| + 3.317x11x12 + 0.051x7x12 − 0.0069x10x11 − 3.325x10 |x10|

−0.065x9x10 − 0.098x7x10 + 0.0025x8

√

x2
9 + x2

8 + 0.0066x8x9 − 0.0053x8 |x8| − 0.0057x7x8

−7.5427× 10−7x2
7 + 1.697 × 10−4x7 − 0.0038

(F̄0)5 = 0.62 sinx4 cosx5+16.2x12 |x12|−56.57x2
12−20.96x11x12−9.622x8x12−0.32x7x12−56.86x11 |x11|

−1.157x2
11 + 0.044x10x11 + 1.76x7x11 + 21.01x10 |x10| − 1.157x2

10 + 0.41x9x10 − 7.167x8x10 + 0.62x7x10

−0.025
√

x2
9 + x2

8 |x9| − 0.0064x7 |x9| − 0.016x8

√

x2
9 + x2

8 − 0.042x8x9 − 0.065x7x9 + 0.033x8 |x8|

+0.59x2
8 + 0.036x7x8 − 9.4993× 10−4x2

7 − 0.0011x7 + 0.024

(F̄0)6 = 0.0037 sinx4 cosx5+2.308x12 |x12|−0.12x11x12−0.079x7x12−1.91x10x11+0.12x10 |x10|+0.0063x9x10

−0.0073x7x10 − 0.0043 |x8|
√

x2
9 + x2

8 − 3.2111× 10−4x8

√

x2
9 + x2

8 − 0.071x8x9 + 1.9811 × 10−4x8 |x8|

−0.0042x7x8 + 2.8285× 10−8x2
7 − 6.3637× 10−6x7 + 1.412 × 10−4

Notice that in fact F̄0 does not depend on (x1, x2, x3), but for simplicity we will still consider Q0 as
a vector function from R

12 to R
12 which is described by

Q0(x) =





























J1(x4, x5, x6) 03×3

03×3 J2(x4, x5, x6)





















x7

x8

x9

x10

x11

x12

















F̄0(x)

























where J1, J2 and F̄0 are as above.
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3.2 Step 2: local existence and uniqueness of solutions for the state law

Let us now show that it is possible to find a time interval I = [0, T ] for which the initial value problem

(IVP)

{

x′ (t) = Q (x (t))Φ (u (t)) +Q0 (x (t)) , 0 < t < T
x (0) = x0 ∈ Ω

is well posed in the sense that for every control function u ∈ L∞ (0, T ;K) there is a unique solution. We
start by recalling the classical theory on this subject and therefore we rewrite (IVP) in the standard way

{

x′ (t) = f (t,x (t)) , 0 < t < T
x (0) = x0 ∈ Ω ⊂ R

N ,
(13)

with f : I × Ω → R
N , N = 12 in our case. As is well-known (see for instance [15, Appendix C]), if

f satisfies conditions (H1)-(H4) below, then we can ensure the existence and uniqueness of a maximal
solution for (13).

(H1) For each x ∈ Ω, the function f (·,x) : I → R
N is measurable,

(H2) for each t ∈ I, the function f (t, ·) : Ω → R
N is continuous,

(H3) f is locally Lipschitz on x, that is, for each x0 ∈ Ω there are a real number ρ > 0 and a locally
integrable function

α : I → R
+

such that the ball Bρ

(

x0
)

of radius ρ centered at x0 is contained in Ω and

‖f (t,x) − f (t,y)‖ ≤ α (t) ‖x − y‖

for each t ∈ I and x,y ∈ Bρ

(

x0
)

, and

(H4) f is locally integrable on t, that is, for each x0 ∈ Ω there exists a locally integrable function
β : I → R

+ such that
∥

∥f
(

t,x0
)∥

∥ ≤ β (t) a. e. t ∈ I.

Our next task is to check that (H1)-(H4) hold in our particular case. For any u ∈ L∞(R;K), since
the control variable u appears in linear and quadratic form, it is clear that the function

f (t,x) = Q (x)Φ (u (t)) +Q0 (x) (14)

is measurable with respect to t for each fixed x ∈ Ω. In addition, looking at the particular form of
(14), it is clear that for each t, the function x → f (t,x) is continuous. With respect to conditions (H3)
and (H4), again the form in which the controls appear let us conclude that (H4) is satisfied. As for
the local Lipschitz condition (H3), since f = (f1, · · · , f12) is a vector function, we should check that
condition for each component. Due to the constraints (2) and taking into account that the first six
components of f only include the transformation matrix between body and world references frames, we
have that f1, · · · , f6 ∈ C∞ (Ω) and therefore they are locally Lipschitz with respect to x. As for the
remaining f7, · · · , f11, we notice that these components include by one side, polynomial terms and terms

in the form of absolute value, all of them locally Lipschitz, and terms with the structure of xj

√

x2
j + x2

k

and |xj |
√

x2
j + x2

k, where x = (x1, · · · , x12) , by the other. Since these functions are bounded and its

derivatives have bounded discontinuities, they are also locally Lipschitz (see [16, p. 126 and p. 154]).
Finally, the product of locally Lipschitz functions is also a locally Lipschitz function.

Therefore we may state that for each x0 ∈ Ω and u ∈ L∞ (R;K) there exists a maximal time T
(

x0,u
)

and a unique maximal solution of (IVP) defined on
[

0, T
(

x0,u
)]

. In fact, looking at the proof of the

mentioned existence result (see [15]), we can see that T
(

x0,u
)

depends on both α(t) = α(u(t)) and
β(t) = β(u(t)) in the sense that

∫ t

0

α(τ) dτ < 1 ∀t ∈ [0, T (x0,u)]

and
∫ t

0

ρα(τ) + β(τ) dτ < ρ ∀t ∈ [0, T (x0,u)].
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Since Φ is continuous on the compact set K and taking into account the particular structure of matrices
Q and Q0, we can choose α(t) and β(t) such that (H1)-(H4) are satisfied simultaneously for all u ∈
L∞(R+;K) and consequently we can choose T (uniformly in u) such that problem (IVP) has a unique
solution in I = [0, T ], with T = T (x0), for every u ∈ L∞(I;K).

Remark 3.1. As showed above, in order to ensure the well-posedness character of the state law in [0, T ]
we must choose T small enough because the Lipschitz condition has a local nature. This result is in full
agreement with the numerical simulations obtained in [1]. Indeed, in addition to constraints (2), we can
also add some constraints on the state variables (x, y, z) due to the bounded nature of the ocean. In such
case, as several numerical experiments in [1] showed, when the submarine is forced to move down in the
ocean (depth change manoeuvre), there is also a displacement in the y-component. Thus, if the submarine
is close to littoral (y bounded), then for T large enough the vehicle may intersect it and therefore the
solution x of the state law will not remain under the required bounds for such time interval.

3.3 Step 3: checking condition (10) in Theorem 2.1

We need to describe for every x ∈ R
12 (and corresponding pair (c(x), Q(x))) the set

N (c(x), Q(x)) =
{

v ∈ R
6 : Q(x)v = 0, c(x) · v ≤ 0

}

,

and check that such set is contained in
N (K,Φ) =

{

v = (v1, · · · , v6) ∈ R
6 : for each u ∈ K, either ∇Ψ(Φ(u))v = 0 or there is i with ∇Ψi(Φ(u))v > 0

}

,

where Q is given by (12).
Let us first find the solution of Qv = 0. From now on we assume that x7 6= 0. The singular case

x7 = 0 is not physically admissible as it corresponds to surge velocity u which is strictly positive in this
model [1]. Hence we have























v3 = 0

v6 = − 1
Q16

(Q11v1 +Q12v2 +Q14v4 +Q15v5)

v6 = − 1
Q36

(Q31v1 +Q32v2 +Q34v4 +Q35v5)

v2 = −Q51

Q52

v1.

Thus


















· · ·
1

Q16

(Q11 −
Q51

Q52

Q12)v1 + Q14

Q16

v4 + Q15

Q16

v5 =
1

Q36

(Q31 −
Q51

Q52

Q32)v1 + Q34

Q36

v4 + Q35

Q36

v5

· · ·

but
Q14

Q16
= 0.7666667 =

Q34

Q36

and
Q15

Q16
= 0.3051282 =

Q35

Q36

so that











· · ·

(Q11 −
Q51

Q52
Q12)v1 = (Q31 −

Q51

Q52
Q32)v1

· · ·

.

Since

Q11 −
Q51

Q52
Q12 = 0 6= 0.0348637 = Q31 −

Q51

Q52
Q32,
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we have

Qv = 0 ⇔































v1 = 0

v2 = 0

v3 = 0

v6 = − 1
Q16

(Q14v4 +Q15v5) =

− 1
Q36

(Q34v4 +Q35v5).

Before completing the characterization of N (c,Q) notice that the function Ψ used in describing N (K,Φ)
is given by

Ψ(m) = (m2
1 −m4,m

2
2 −m5,m

2
3 −m6), m = (m1, · · · ,m6) ,

so that Ψ is obviously C1 and convex. Moreover,

∇Ψ(m) =





2m1 0 0 −1 0 0
0 2m2 0 0 −1 0
0 0 2m3 0 0 −1





Hence, for v such that Qv = 0 we obtain

∇Ψ(m) · v = −





v4
v5
v6



 .

This means that if a vector v (in the manifold Qv = 0) satisfies

v4 = v5 = v6 = 0

or at least one of these three components is negative, then it belongs to N (K,Φ).
As we have seen above, we have the relation

v6 = −
1

Q16
(Q14v4 +Q15v5) = −

1

Q36
(Q34v4 +Q35v5).

Hence, if both v4 and v5 are positive or null, we have v6 necessarily negative or also null. Consequently

N (c,Q) ⊂ N (K,Φ),

and applying Theorem 2.1 the proof is complete.
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