A FUNCTIONAL CALCULUS FOR ALMOST SECTORIAL
OPERATORS AND APPLICATIONS TO ABSTRACT
EVOLUTION EQUATIONS

F. PERIAGO AND B. STRAUB

ABSTRACT. In this paper, we construct a functional calculus for linear opera-
tors A whose spectrum lies in a sector of the complex plane and whose resolvent
satisfies ||[(z — A)7Y| < M |z|” for some —1 < v < 0 and all z outside the
sector. By means of this functional calculus, we define complex powers and
semigroups associated with A and some of its powers. Finally, these abstract
results are applied to prove existence and uniqueness of classical solution for
three different types of abstract differential equations.

1. INTRODUCTION

Sectorial operators, that is, linear operators A defined in Banach spaces, whose
spectrum lies in a sector S, = {z € C\{0} | |argz| < w}U{0} for some 0 < w <,
and whose resolvent satisfies an estimate

(1) I(z— A7 < Mlz|"t  forallz€ C\ S,

have been studied extensively during the last 40 years, both in abstract settings
and for their applications to partial differential equations. From an abstract point
of view, it is of particular interest to construct functional calculi for this class
of operators and wide classes of holomorphic functions. Then complex powers of
an operator A and semigroups associated with these powers are defined through
the functional calculi. Finally, these abstract results can be applied to linear and
non-linear partial differential equations, mainly in the parabolic case, that is, when
0 <w < w/2 (see [1, 12, 20] for material regarding functional calculi, and [8, 10,
15, 17] for the applications).

Many important elliptic differential operators belong to the class of sectorial
operators, especially when they are considered in the Lebesgue spaces or in spaces
of continuous functions (see [3] and [10, Chapter 3]). However, if we look at spaces
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of more regular functions such as the spaces of Holder continuous functions, we
find that these elliptic operators do no longer satisfy the estimate (1) and therefore
are not sectorial, as was pointed out by W. von Wahl in the case of the Laplacian
(see [21] or [10, Example 3.1.33]).

Nevertheless, for these operators estimates such as

(2) I(z= A7 < Mlz|”  forallzeC\S,

and some —1 < v < 0, can be obtained.

Our first aim in this paper is to construct a functional calculus for operators A
defined in a Banach space, whose spectrum lies in a sector S,, and whose resolvent
satisfies (2). This is done in Section 2, where some examples of elliptic differential
operators which satisfy these conditions are also included. Qur approach is based
on the ideas underlying the MclIntosh functional calculus for sectorial operators
(see [12] for the Hilbert space case and [1, 7] for the construction in a Banach
space). We emphasise that no assumption on the density of the domain of the base
operator A is made in our construction. An alternative functional calculus, based
on C-semigroups, can be found in [4].

The class of holomorphic functions that we consider is large enough to include
complex powers and exponentials. Then, by means of the functional calculus, in
Section 3 we define complex powers of A for all exponents o € C, as well as the
semigroups associated with these powers. In particular, we prove that if A satisfies
(2) for some 0 < w < 7/2, then the semigroup associated with the fractional power
A% for 0 < a < o=, is analytic and of growth order "nll The latter essentially
means that the semigroup has a singularity of type O(t’%) as t goes to zero.

Section 4 is devoted to applications to abstract differential equations. We con-
sider the inhomogeneous linear and the semilinear first order abstract Cauchy prob-
lem associated with an operator A satisfying (2), as well as an incomplete second
order abstract Cauchy problem. Under suitable regularity conditions for the initial
data, existence and uniqueness of classical solutions is proved.

Acknowledgements. The authors thank G. Dore for providing his unpublished
paper [7]. The first author gratefully acknowledges the hospitality of the School of
Mathematics at UNSW, Sydney, where this work was carried out during the winter
of the Olympic year 2000.

2. AN EXTENSION OF THE McINTOSH FUNCTIONAL CALCULUS

Throughout this paper, (X, || -||) denotes a complex Banach space. By an operator
in X, we mean a linear mapping A : D(A) C X — X whose domain D(A4) is
a linear subspace of X. As usual, R(A) stands for the range of A, o(A) is the
spectrum of A and p(A4) the resolvent set of A. Finally, we denote by L£(X) the
space of all bounded linear operators on X.

For 0 < p <, let SY be the open sector

{z e C\{0} | larg 2| < p}
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and S, be its closure, that is,

S, = {z€C\{0} | Jargz| < p} U {0}.
Note that we use the argument function arg with values in |-, 7).
Definition 2.1. Let -1 <y < 0 and 0 < w < 7. By ©)(X) we denote the set of
all closed linear operators A : D(A4) C X — X which satisfy
(i) o(4) C S, and
(ii) for every w < p < 7 there exists a constant C,, > 0 such that
(3) Iz = A7 < Culel” forall 2 ¢ S,

For simplicity of notation, we write ©) instead of ©7(X) when there is no
possibility for confusion.

Remark 2.2. Observe that every operator A € O, satisfies 0 € p(A). In particu-
lar, A is injective. To see this, let w < u < 7. Then ]—00,0[ € S, and by (3), the
power series of the resolvent (z — A)~! about 2 < 0,

i (z0 — 2) — A)~ (kD)
—o
converges in the open disk D,, = {z € C | |z — 20| < C;'|2|77}. Taking
20 = —2_10;7%, it follows that |zo| < C}'|20|™". Hence 0 € D, C p(A).

Next, we give some examples of operators which belong to @, for some v and
w, and are not sectorial.

Example 2.3. Let 0 < a <1, m € N, and 2 be a bounded domain in R with
boundary 9 of class C*™. In the Banach space X = (C%(Q),|| - |lo) of Holder
continuous functions, consider the differential operator A given by

Aulz) = Z ag(z)DPu(x) for all z € Q,
[81<2m
with domain D(A) = {u ¢ C?™te(Q) | D5u|8Q— 0 for all |8] < m —1}. Here,
fBis a multundef in (NU{0OhH™, |8] = ijl B; and DP = =7, (1 Das 9 )8i_ If the
cocflicients ag : @ — C of A satisfy thc conditions
(i) ag € C¥(Q) for all |3| < 2m,
(ii) ag(z) € R for all z € Q and |8| = 2m, and
(iii) there exists a constant M > 0 such that

M7HeP™ < Z ag(z (z)¢? < M|E)P™  forall € € R" and z € Q,
|B]=2m
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then there exist A,& > 0 such that the operator —A + A belongs to the class ©7

withw =% —¢ and v = 5% — 1. For the details, we refer to [21, Satz 1 and Satz 2].

Moreover, as shown in [21, Bemerkung 2|, the exponent v = ;2 — 1 is sharp. In
partlcular the operator — fA + A is not sectorial. Note that A is not densely defined
since D(A) C {u € C*(Q) | u|,,=0}.

Example 2.4. In the Banach space X = (Co(R; C2),||-||) of continuous functions
which vanish at infinity, endowed with the norm

A = Nl filloe + ll.f2lleo for all f = (f1,f2) € X,

congider the matrix multiplication operator
A, :D(A)CX - X, f - A, f =4qf

with maximal domain D(A,) = { fexX | qgf € X } where ¢ is the matrix-valued
function given by

1+ 2?2 +i(1+2?) el
q(z) =
0 1+2% —4(1+2?)
with —1 < v < 0. It is not difficult to scc that A, is closod and denscly defined,
and that o(4,) = {x +ix | x> 1} Moreover, for every 7 < u < 7, there is a
constant C' = C(u,~y) > 0 such that

Iz — A7 < Oz for all z ¢ S,
that is, A, € 91/4

Other examples of operators in the class @), can be found, for example, in [9,
Chapter 1].
We now introduce some special functions and classes of functions. Given 0 <
< m, we set
H(Sy) = {f:5, = C| fis holomorphic}
and
H>(SY%) = {f € H(S)) | fisbounded}.
On C\ {—1} we define the functions ¢g and ¢ for k € N, by

1 z

wo(z) = 157 and Yi(z) = m

and put
Bo(S,) = {f € H(SY) | sup log ' (2) f(2)] < oo}

Note that for all z € Sﬂ, the estimate

Z| > cosg(1+|2|)

142 = |emi™ + 2| cos 28

2(1 +z)| > |cos arzgz
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holds. Hence the space ¥o(SY9) consists of all functions f € H(SY) for which there
exists a constant K, > 0 such that

1f(z)| < Ku(1+]z)™"  forallz €S0

For every s < 0, we put
V(S = {feH(Sy) | sup [ (2) f(2)] < oo},
zZE€ES,

where m is the smallest integer such that m > 2 and y+1 < —(m —1)s. A function
f € H(S)) belongs to $7(S)) if and only if there exists a constant K, > 0 such
that

|f(z)] < Kulz|7° @1+ |z))™ for all z € S9,
that is, f is O(|z|~®) as |z| — 0 and O(]z|(™~ %) as |z| — .
Finally, we set
78 = |Jwisn v (s
5<0
and
F(85) = {f c H(S)) | there exist k,n ¢ N such that fi} ¢ F¢(S)}.

It is not difficult to show that if f belongs to F(SY), then there are constants
r, K, > 0 such that

(4) lf(2)] < Ku(z]7" +|2]") for all z € S).

Conversely, if f € H(S)) satisfies the estimate (4), then, taking k € N with k > r,
it follows that fif € W2(SY) for allr —k < s < 0 and m € N such that m > 2
and y+ 1< —(m—1)s.
The classes of functions introduced above satisfy the inclusions
Fo(Sp) C H®(Sp) © F(Sp) © H(SY.

The aim of this section is to construct a functional calculus for operators in the
class ©) and functions in F(S9). We first develop a functional calculus for the

class 7 (SY) and then extend it to F(SY).
Throughout the paper, T'y with 0 < # < 7, will denote the path
{re7®|r>0} U {re’ | r >0},
oriented such that S3 lies to the left of T'y.

Theorem 2.5. Let A be an operator in the class ©), and w < 6 < pu < 7. Then
for every f € }'3(52), the integral

(5) JA) = = [ ) - At

271 Ty

is absolutely convergent and defines a bounded linear operator on X. Moreover, its
value does not depend on the choice of 8 for w < 8 < u.
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Proof. Let w < 1 < 6. Then for all z € Ty we have
Cak, 2|75 (1 + |2])™* if f € ¥Y(S}) for some s < 0,
CaKylz|"(L+|2)"1 if f € ®o(S)).

Hence (5) is absolutely convergent and defines a bounded linear operator on X.
Now let w < 1 < 81 < 8 < pu. For 0 < § < 1 consider the path

As = {re® | 6<r<d '} U {67 |6 <P< b}
U {re® |6<r<d '} U {6 |61 <$ <6}

oriented counter-clockwise. Since the function f(z) (2 — A)~! is analytic in C\ S,
Cauchy’s Theorem yields

1/(2) (= A7 < {

(6) f(2)(z—A)tdz = 0.
Ay

Taking limits in (6) as § — 0, we conclude that
o0 o0
/ fret®) (re?n — ATl dr = / f(ret?2) (re?2 — A)~Lei2 gr
0 0

since the integrals along the paths {(56“‘5 | 0 <¢p< 92} and {(5*16“15 | 0 <op< 92}
vanish as § — 0. An analogous reasoning shows that

/ f(re 1) (re 1 — A)letgr :/ flre ®2)(re=2 — A)~le=¥24r. O
0 0

Remark 2.6. Note that as 4 and A~' are closed, f(A4) commutes with these
operators on their respective domains.

Theorem 2.7 (Product Formula). Let A € ©) and w < p < 7. Then for all
g€ .7:3(52), we have fg c fg(sg) and

(f)(4) = F(4)g(A).

Proof. Since |(fg)(2)| < ||fllos |g(2)| for all z € S}, it is clear that fg € F(SY).
Take w < ¢ < 65 < p. With the resolvent equation (z — A)™! — (w — A)7! =
(w—2)(z — A)"H(w — A)~!, we obtain

—4x? f(A) g(A) = /r : f(2) g(w) (z — A) Y w — A) "' dwdz

- /F f<z>/F I gy (o — 4) de

62’11]—2

+ /F g(w) () dz (w— A)™ dw.

05 T, z—Ww

By Cauchy’s Theorem, f;.. 1) gy = 0 and Ir. 9W) gy = 27 g(2), which com-
1 2

zZ—w w—=z

pletes the proof. O
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Proposition 2.8. Let A € ©), and k,n € NU {0} with k > n. Then for every

w?
w < p < m, the function py , given by

Z’VL

m fO'I" alle(C\{—l},

SOk,n<Z> =

belongs to Fg (S)) and
Orn(A) = A1+ A)7F
In particular, the operator o n(A) is injective.
Proof. The fact that ¢g, € Fj(SY) is evident. For 0 < § < 1, consider the path
As composed of
{reiie | §<r< 571} U {671(3” | 0<¢< 277—0}
U {rew |5§r§671} U {5@”5 |9§¢§27r—0}

oriented clockwise. By the Residues Theorem, 5 an orn(2) (z — A)"tdz equals

the negative of the residue of ¢ ,(2) (z — A)~!

lim Yrn(2) (z — A)*l dz = / wrn(z)(z — A)*1 dz
§—0 As Te

since the integrals along {67'e" | § < ¢ <27 — 6} and {de’® | 6 < ¢ < 2r — 6}
vanish as § = 0. As ¢ ,(2) (z — 4)7! has a pole of order k at 2z = —1,

(k=) _q
Res(n(2) (2 - ) 12 = -1) = 20,
where f,(z) = 2" (z — A)~!. A simple calculation shows that

(k—1)

ﬁ = (-1)F! (Z(—l)i (?)zn—j (z—A)_(n—j)>(z_A)—(k—n)

in z = —1. Moreover,

j=0
and hence
Res(ppn(2) (z — A)7Hz=—1) = —A"(1+ A)7~
The injectivity of ¢p, »(A) follows from the fact that A is injective. a

Our goal is to construct a functional calculus for functions in the class F(S)).
Recall that if f € F(S)), then there exist k,m € N such that fuk ¢ F(S)). This
together with Proposition 2.8 enables us to give the following definition.

Definition 2.9. Let A € 0], w < p < 7, and f € F(S)). Take k,m € N such

that fyk, € 77 (S9). We define the linear operator f(A) on the domain
D(f(4)) = {z € X | (foh)(A)z € D(A™IR)}

by
FA) = @A) (Fom)(4),
where the operator (f¢£ )(A) is given by (5).
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Note that the operator f(A) is closed since it is the product of the closed
operator (¥ (4))~! with the bounded operator (fy% )(A). We prove next that
the above definition of f(A4) does not depend on the choice of k and m.

Proposition 2.10. Let A be an operator in the class ©), and w < p < w. Let
f € F(S%) and j,k,m,n € N be such that fii,, foh € FJ(S2). Then for any
re X,

(feh)(A)z € D[ (A)7']  if and only if  (fy})(A)z € DI(r(A)7'],
and in this case
W, (A (fh) (Az = (@i (A) 7 (fh)(A)z.
Consequently, Definition 2.9 does not depend on k and m.

Proof. If m # n, say m > n, then the function ¢ ¥, * belongs to 7 (S9) and
consequently so does fi¥ = (¥k —F) (fyF). By Theorem 2.7,

(fem)(A) = (Unwr ") (A) (Fu)(4).
Let z € X. With Proposition 2.8 we obtain that
(fem)(Az € Dl(r(4)7"] = DAY
if and only if
(fem)(Dz € 1+ A7 IEDIARTYE = Dl(yy, (4) 7],
and then

(m (A) 7 (fm) (A

(L+ )" AT (L )R (fyl) (A)z
@n(A) ™ (fem)(Az.

Now suppose j > k. As fup,, fok and 7% belong to Fg(S9), Theorem 2.7
and Proposition 2.8 yield

(JUI)(A) = L8 (A) (Fok)(A) = AT7F(+ 4700 (fpk y(A).

Hence for = € X, (fi,)(A)z € D[(¥,(A))~1] if and only if (f¢%,)(A)z belongs to
D[(¥* (A))7!], and in this case

(1, (A) " (Fol,)(Dz = (5, ()7 i (A (Fon,) (A)z
(% () (Fom) (A
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Theorem 2.11 (Product Formula). Let A € 07 and w < p < w. Then for all
g€ .7:(52) the following hold.

(i) f(A)g(4) C (fg)(4).
(1) If DI(fg)(A)] C Dlg(A)], then f(A) g(A) = (fg)(A).
(iti) If g(A) is bounded, then f(A)g(4) = (fg)(4).

Proof. Let j,k,m € N such that g¢J,, fof, € 77 (S0).
To see that (i) holds, let z € D[f(A)g(A)]. By Remark 2.6, Theorem 2.7 and
Proposition 2.8, we have

JA) gDz = v (A7 () (A) v, (4~ (g9d)(A)z
= Y (A) " (Fgvn ) (A)z
(fg)(A)z.

Now assume that D[(fg)(A4)] C D|g(A)] and take x € D[(fg)(A)]. The same
reasoning as above yields

W7 f9)(A)z = (fen)(A) (gvh,)(A)z
= ([ (A, (A)h, (A) ™ (ged) (A)z
= ¢, (A)(fyn)(A) g(A)z.
Hence g(A)x € D[f(A)] and (fg)(A)z = f(A) g(A)x. This proves (ii).
Part (iii) is an immediate consequence of (ii). a

Our next result is a first step towards spectral theory for operators f(A) with
feF(s)).

Proposition 2.12. Let A € O} and w < p < w. Suppose f € .7:(52) satisfies that
f(2) #0 for all z € SY. If f~' € F(SY), then f(A) is injective and (f(A))™! =
f7HA).

Proof. Let j,k,m € N such that f¢f and f~'¢J belong to 77 (S%). Take z €
D[f(4)]. By Proposition 2.8, Remark 2.6 and Theorem 2.7, it follows that

(f')(A) f(A)z = (F5)(A) (W ()™ (for)(A)z
= (AT R (A2
= (Y () ynt (A)z
= ¢! (A)x.
Hence f(A)x € D[f~'(A)] and f~Y(A)f(A)z = . O

The functional calculus on the class F(S9) does not transform, in general,
bounded functions into bounded operators. However, the following partial result
will be very useful in the next section.
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Lemma 2.13. Let A € 0] and w < § < p < w. Suppose f € H*(S)) satisfies
the following two conditions.

(a) The function z — f(2)(z — A)™! is absolutely integrable on T'y.

(b) sup |f(re'?)| = 0 as r — oo.

—p<o<p
Then f(A) is the bounded linear operator given by
_ 1 ~1
R CIERIRS

Proof. Since fio € Fg(S)), we need to show that

- f(Z) A(l +A)_ (Z — A)_ dz = LH m

The resolvent equation (z — A)™! — (w — A)7! = (w—2)(z — 4) " Hw — A)~! yields

f(2)(z — A dz.

g F()AQ+A) 2 (z—A) dz

_ (2) — /(=) 1
= F91+ZA<1‘|‘A> dZ+AgmA(1+A) dZ

f(z) zf(2) 1
_ /Fg —(1—1—2)2 dz + /rg —(1—1—2)2 (z — A)" dz.

By Cauchy’s Theorem, the first three integrals on the right hand side vanish. This
gives the claim. O

3. CoMPLEX POWERS AND SEMIGROUPS

In this section, we study the operators which, by means of the functional calculus
developed in the preceding section, are associated with the functions ¢,(z) = 2%
and go.:(z) = e **". Throughout this section we assume that A is an operator in
the class ©). In particular, A is injective. However, we make no assumptions on
the domain of A, that is, 4 may have non-dense domain.

It is worth pointing out that a satisfactory theory of complex powers for one-
to-one sectorial operators with possibly non-dense domain and/or range, which is
valid for all complex exponents, has been obtained only very recently (see [7, 11]).

Further, we note that if A € ©7, then it is not hard to see that for every
w < p < 7, there is a constant M, > 0 such that

Iz —A4)7Y < M, forall z ¢ S,,.
Hence A belongs to the class of operators considered in [5, 19]. However, the theory

of complex powers developed there requires that A is densely defined.
For every a € C, the function ¢, given by

da(z) = 2° for all z € C\]—o0,0],
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belongs to F(SJ) for 0 < p < 7, since ¢, satisfies an estimate of the form (4).
This enables us to give the following definition.

Definition 3.1. Let a € C. We define the complex power A% to be the operator
AY = ¢o¢ (A)

As a straightforward consequence of the functional calculus developed in Sec-
tion 2, we obtain the following properties of the operators A%.

Theorem 3.2. Let A € ©). Then for all o, € C the following hold.
(i) The operator A* is closed.
(i) A*AB C A*+B. Moreover, if D(A®8) C D(AP), then A®AP = A+5.
(iii) A% is injective and (A%)71 = A=«
(iv) A"=A--- A for alln € N and A = 1.
———
n-times
Proposition 3.3. Let A € O) and w < 8 < 7. Let a € C with Rea > 0, and
n € N such that n > Rea. Then
1 2%

A% = (1+ A" — — (2= A) 4.
@ (1+4) 27 Jp, (14 z)ntt (2 )
Consequently, D(A™1) C D(A%).

Proof. By Theorem 2.11, part (iii), and Theorem 2.5,

1 z
a —(n+1) - = s
A%(1 + A) 27Ti/re 032 (z

Let z € X. By Theorem 2.11, part (iii), it follows that x € D(A?%) if and only if

z% _ n
/1—‘ m(Z-A) ll'dZ S D(A +1),

83

—A) dz.

and in this case the equality (7) holds.
If z € D(A™*1), then the integral

2% _
/r T G A7+ adz
8

is absolutely convergent and, as (1 + A4)"*! is closed, z € D(A%) by the first part
of the proof. O

In difference to the case of sectorial operators, having 0 € p(A) does not imply
that the complex powers A~ with Rea > 0, are bounded. The operator A~%
belongs to £(X) whenever Rea > 1 ++.

Proposition 3.4. Let A € ©). Then for all a € C with Re o« > 1+, the complex
power A~% is bounded.
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Proof. Let w < § < u < w. Take k,m € N such that £ > Rea, m > 2 and
27k € FJ(S9). We have to show that for every z € X,

k—a
Te z)m

k—a
. _ .
As fFe @ior dz = 0, we can write

Zk—a Zk—a (Z—A)_l +(1—|—A)_1
(- A =
/m (A /r (Tt z)mF 1 1+2 vz

Zk—a 3 3
:A:HIZRKT@7A>R1+mIm@

Zk—a

= (1+A)_1/F 7(1+z)mk_1 (z — A) 'z dz.

Note that for Re & > 1 + v the integral

k—a
/ A (z — A lzdz
r

. (L4 z)mk—1

is absolutely convergent. Repeating this argument (mk — k — 1)-times yields

k—a k—a
A AV lsdr — —<m—1>k/ AT
/Fg(l—%—z)m’“ (z—A)  zdz (1+ 4) S (z —A) " xdz,
which completes the proof. O

Remark 3.5. The result of Proposition 3.4 is best possible, that is, the complex
powers A% with Rea > —(1 + «), are in general not bounded. Consider, for
example, the operator A, as given by Example 2.4.

For a € C, the complex power A3 of A, coincides with the multiplication
operator associated with the matrix-valued function

. ity 224 z2))* — z2—i %))
(1422 +i(1+27))° (Lt i) (14" —i(1427)1)

dalz) =
0 (1+ 22 —i(1 +2?))

[¢3

¢ 18 un-

The term in the upper right corner, and consequently the operator A
bounded if Rea > —(1 4 ~).

It is natural to ask whether the fractional power A% of an operator A € 0},
belongs to a similar class, that is, if A* € O for some -1 <5 <0and 0 <@ < 7.
The answer is given next.

1+t
Proposition 3.6. Let Ac O} and 1 +y<a< Z. Then A% ¢ @a:,+ o
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Proof. By Theorem 3.2, the linear operator A% is closed and injective. It remains
to show that o(A%*) C S, and that the resolvent of A* satisfies the estimate (3).
Clearly, ¢ (S,) = Sap for all 0 < v < min{z, Z}. In particular, ¢, (S.,) = Saw-
Let aw < p < wand £ ¢ Sy. Take w < v < min{n, £}. Consider the function
#(z) = & — 2% on SY. We have ¢ € F(S9) and ¢(z) # 0 for all z € S2. Moreover,

I e e ]
> ‘cos arg(z") ; arg(~%) ‘ (12| + 1€])
= Jsin C2BEZAEE ((-jo 1 jg)
> min{sin _Z(W,sin K +2ay} (I2]1* + [€])

for all z € SY. It follows that ¢=! € F(S9). In fact, setting K, , equal to the

reciprocal of min {sin £=*% sin “';&}, we have K, , > 0 and

(8) 167" (2)] < Kuw (121 +1€) 7" for all 2 € SO.
By Proposition 2.12, ¢(A) = £ — A% is injective and
(E—AM" = ¢7'(A).

From the assumption o > v + 1 and the estimate (8), it is clear that ¢~! satisfies
the hypotheses of Lemma 2.13. Hence (¢ — A%)~! is bounded and

_ 1 _ _
(-4 = el L Hz) (2 = A)7 dz
we Ts
for some w < 8 < v. In particular,

K C e rY CK, C y+1

ALy < D V/ dr — por Sy o140 E

I~ am)7 < e [T e
where C = C(a,7) = [,° 87 (1 + 5%) " ds. O

Remark 3.7. For 0 < a < 147, in general, a result similar to Proposition 3.6 can
not be expected. To see this, consider again the operator A, given in Example 2.4,
If, for some z € C, the inverse of z — Ay exists, then it must coincide with the
multiplication operator associated with the matrix-valued function

1 gt i i
-1tz i(l+e2))> 2i(1+z2) |z—(Arz2ri(1+z2))> ~ z—(A+z2—i(l+z2))™

1
0 z—(1+z2—i(14+z2?))>

The upper right hand term is unbounded for & < 1 4 . Therefore o(4g) = C.
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Next, we turn our attention to generator properties of the powers A%*. Through-
out the remainder of this section, we assume that A belongs to the class ©) for
some w with 0 <w < §.

Given 0 < a < 5~ and t € S%_W, take p with w < p < min{w,%}.
Consider the function gq ; on SY, given by
Gars(z) = e for all z € Sj.
Since [ga,¢(2)| < e~ IHI=I" cosllaretl+an) for all 2 € S9, it follows by Lemma 2.13 that
1 -
o) = oo [ gusle) (2= )
™ Te

defines a bounded linear operator on X. Here w < 6 < p.

Note that the above holds in particular for 0 < o < 1.

In the following, we investigate the structure of the operator families { 7, () | te
S%_ aw} for 0 < a < 5-. We show that they form analytic semigroups of growth

order 'YTH as defined below.

Definition 3.8. Let 0 < § < 7 and 8 > 0. A family {7(¢) | ¢ € S?} of bounded
linear operators on X, is said to be an analytic semigroup of growth order 5 if the
following conditions hold.
(i) T(t+s)=TE)T(s)forall t,s € S5.
(ii) The mapping t ~ T (¢) is analytic in SJ.
(ifi) There exists a constant C' > 0 such that

IT®) < Cct?  forallt> 0.
(iv) If T(t)z = 0 for some t € S?, then z = 0.

Semigroups (7 (t))¢>o of growth order 8 were introduced by G. Da Prato [2]
(see also [13, 14, 18, 22]). We note that our definition differs from the classical
definition of such semigroups in two main points. First, we do not require the set

Xo = |JT)X
>0
to be dense in X . Second, we replace the strong continuity of the mapping ¢ — 7 (¢)
for ¢ > 0 by condition (ii).
Suppose T (+) is an analytic semigroup of growth order 3. By the continuity set
of T(), we mean the set
Qr = {zeX | lim 7 (t)z = z}.

t—0
t>0

The operator (' defined on the domain
T)x —

D@G) = {ze X | lim i exists }
t>0
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by Gz = lim; o +(T(t)z — ), is called the infinitesimal generator of 7(-). As in
[2, Teorema, [1.1]], one shows that G is closable. We call the closure G of G the
complete generator of the semigroup 7 ().

We now return to the operator families {7,(t) | t € S% _ 4.} introduced above.

Theorem 3.9. Let A € ©), for some 0 < w < Z, and 0 < a < 5. Then the
family {7;(t) | t € S%_aw} of bounded linear operators on X, forms an analytic
semigroup of growth order 'Yail More precisely, the following properties hold.

(i) To(t +5) = Tol(t) Tals) for allt,s € S%_aw.

(i) There exists a constant C = C(v,a) > 0 such that

(9) ITa@ll < Ct 5 forallt>0.
(ii) The range R(T,(t)) of To(t) with t € S%—aw’ is contained in D(A®). In
particular, R(T,(t)) C D(AP) for all f € C with Re 8 > 0, and

1 a
AT (e = — | 2Pe @ (z— A) 'zdz forallz € X.
27 Jr,

Consequently, there is C = C(v,a, ) > 0 such that
(10) AT, ()| < Ct™ for all t > 0.
(iv) The function t = T, (t) is analytic in S% and

—Qaw

y+Ref+1
o

dk
dtk
(v) The operators T, (t) with t € S%

(Ta(D)) = (~D)* 4" T()  Jorallie Sy ..

T _ oo OTE njeclive.
(vi) Let 8 € C with Re 8 > 0. Then T,(t)A? C APT,(t) for all t € S%_aw.
(vii) Let Q, denote the continuity set of To(+). If 8 > 1+, then D(A%) C Q,.
Proof. Property (i) is an immediate consequence of Theorem 2.11, part (iii).

To see (ii), choose w < § < p < min{w,J-}. For every t > 0, we have by
Lemma 2.13,

1 o
at) = 5= e (z—A)  de
Ta(t) ori Fge (= ) Z
Hence
Cu [T e 1 gy
[[Ta@®)| < _M/ e trocosal y g C’MI‘(7+ )(cosa ) L
T Jo o -

For (iii), let ¢ € S%
rem 2.11, part (iii), yields

APT() = 2P(4) gai(A) = (Pga,)(A)

Choose p accordingly. Since T, (t) is bounded, Theo-

—qw "’
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for cvery 8 € C with Re 8 > 0. But the function 27g, ; belongs to Fg (S5). Thus,
ABTL(t) € L(X) which implies R(T,(t)) C D(A?). The estimate (10) follows from
the representation

1 o
AT () = — et (z — A7 dz
27 Te
for all ¢t > 0, with w < § < p < min{7, 7=}, as in the proof of (ii).
To see (iv), take 0 < § < T — aw. Choose w < 6 < p < min{m, Z>2°}. Then for
every k € NU {0}, the function
ok a o
(z,t) — W(e_tz (z—A)7") = (“DFFre (2 - A)7!
is analytic in ¢ and continuous on T'y x S9. Moreover, the function z**e~**" belongs
to Fg (S9) and the integral

/ 2R % (7 — A) TV dz
Tg

converges uniformly on compact subsets of S?. Hence 7,(-) is analytic on SY and
dk (_l)k
s (7?1 (t>) =

the last equality being a consequence of (iii).
The Dominated Convergence Theorem yields

2w

/ z’me_tza(z —A)7ldz = (fl)kA’m’ﬁx(t),
'y

. z —t2% =1 _ z -1
}gr(l) s (1+Z)26 (z—A) "xdz = /1“9 (1+Z)2(z A) " xdz

for all x € X. By Theorem 2.11 and Proposition 2.8, this is equivalent to
lim 7a(t) A1+ A%z = A1+ A) 2z for all z € X.
f—

If T, (to)z = 0 for some ty € S% then

Talt+to)z = To®) Talte)z = 0 for all ¢ € S5 _,,,-

As To(+) is analytic, the uniqueness theorem for analytic functions gives that
Ta(t)x =0forall t € S%_ .- 1t follows that

o1

0 = lim A+ A2 Ttz = lim Ta®) AQ+A) %z = A1+ A) %z

and, as A(1 + A)~? is injective, z = 0. This proves (v).
Property (vi) follows from part (iii) and Theorem 2.11, part (i).
Finally, for (vii), we take z € D(A4?). By Theorem 2.11 and Lemma 2.13,

L= b Lot (o= A)! 8
Tot)x —x = ,/F61+Zﬁ(e D(z—A) 1+ A%)xdz,

and the Dominated Convergence Theorem yields lim;_,o 7o (t)z = . O
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We denote the generator of the semigroup 7,(-) by A,. In the last part of
this section, we aim to identify the complete generator A, of 7,(+). To this end,
consider the Banach space Xp = (D(A), || - ||)- Recall that the part Cp in Xp, of
an operator C in X, is the operator defined on the domain

D({Cp) = {Z’ED(C)ﬂXD | C.Z‘EXD}

by Cpz = Cz for x € D(Cp). It is not difficult to show that 4 € ©7(X) implies
Ap € ©)(Xp). Moreover, the operator Ap is densely defined.

In order to establish the connection between the complete generator A, of 7, (+),
and the fractional power —(Ap)%, we need the following lemmas.

Lemma 3.10. Let A € O)(X). Then for every a € C,
(Ap)* = [A%]p,
that is, (Ap)* is the part of A% in Xp.

Proof. From the construction of (Ap)%, it is clear that (Ap)* C [4%]p.
For the converse inclusion, let € D([A%]|p). Takew < < p < wand k,m € N
such that z®¢k, € 77 (S9). By Definition 2.9 and Proposition 2.8,

a+k
A%lpz = (1 AmkAk— —A)'zdz
[A%Ipe (+ 27i 1+ka ) edz

Asz € Xp, (z —A) 'z = (2 — Ap) 'z for all z € p(4) C p(4p). This gives
(226 )(A)z = (z6k)(Ap)z and (229 ) (4)z € D(A~*) N Xp.

Moreover, since [A%]pr € Xp and (1 + A)~™* leaves Xp invariant, we have
that A™% (229% Y(Ap)z = (1 + A)~™k [A%]px belongs to the set

{z € D(A™) | A™z € Xp} = D((Ap)™").

This implies [A%]pz = (1 + Ap)™* [A~*]p (224 ) (Ap)z.
It remains to show that [A~*]p = (Ap)~*. But this follows from

D([A7F]p) = {AFx | z € D(A*) C Xp and Az € Xp}
= {(AD)kx | T € D((AD)k)}
= D((4p)™"),
and [A=*]pz = (Ap)~*z for all z € D((Ap)~"). O

Lemma 3.11. Let A € O] for some 0 <w < §. Let 0 < a < g and n € N such
that n > . Then D(A™!) C D(A,) and Aqx = —A%x for oll x € D(A™F1).

Proof. Let z = (1+A4)~ "ty for some y € X. By Theorem 2.11 and Lemma 2.13,

To(t)z — z 1 1 e " —1 N
fode v —A) yd
" 2mi Jp, (L +2)"H ¢ (z=4) ydz
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for all t > 0. Letting { — 0, the Dominated Convergence Theorem and Proposi-
tion 3.3 yield z € D(A4,) and

1 z%
Ao = —— | o (2—A) lydz = —A°(1+A4) "Dy = —A%z. O
:1: 2mi g(l—l—z)"-l—l(z ) 'ydz (1+4)” y = z
Proposition 3.12. Let A € ©} with 0 <w < 5. Then the following hold.
(i) Ay, C —(Ap)® for ald < a < 5-.
(ii) If y+1< a < Z, then —(Ap)® C A,.

2w7
Proof. (i) Let x € D(A,). By Proposition 2.8 and Proposition 2.10,
Agr — Tim Loz =2
t—0 t
1 1 e " —1
= lim (1 + A" — —A) lzdz.
lm( + ) 27.{_2 T, (1+Z)n+1 t (Z ) raz
Since limg o 357 Jp, W * (z— A)'zdr = —A%*(1+ A)~"*Vz and

(1 + A)"*+ is closed, it follows that € D(4®) and A,z = —A%z. Moreover, we
have T, (t)x € D(A) and, as D(4,) C Qy, € D(A). Therefore A% = —A,x €

D(A). Lemma 3.10 yields x € D[(Ap)® ] and Apx = —(Ap)*z. This means
Ao C —(Ap)? and, since (Ap)? is closed, 4, C —(AD)a
(ii) Suppose vy +1 < a < 5. Take x E D[((Ap)*)?]. Since D[(Ap)?] is

contained in Q, we have limy_o 74(t)z = z and
—(Ap)*z = }ig(l)Ta(t)[—(AD) z] = hm —(Ap)*Ta()x = }51(1) A To (B,

the second equality being a consequence of the fact that 7, (¢) and (Ap)*® commute
on D[(Ap)®], and the third one a consequence of Lemma 3.11. As A, is closable,
this gives z € D(4,) and A,z = —(Ap)°x

The proof will be complete if we prove that D[((Ap)®)?] is a core for (Ap)®.
Since Ap is densely defined, it is not hard to show that D[(Ap)"*!] for n € N,
is dense in D(A). Let n ¢ N with n > a. Now, given £ € D[(Ap)®], there is a
sequence (Ym)men € D((Ap)™*1) C D[(Ap)®] such that

Um 5 x4 (Ap)°z
Put z,, = (1 + (4p)*) " 'ym € D[((4p)*)?]. Then
Tm TS (14 (Ap)N) T A+ (Ap)M)z = =
and
(Ap)*m = (AD)*(1+ (AD)*) 'ym
"5 (Ap)*(1+ (Ap)*) M1+ (Ap)™)z
= (Ap)“z.
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Finally, we prove that, at least in the range 14+v < o < 5, there is a one-to-one
correspondence between A% and the semigroup 7T, (+).

Theorem 3.13. Let A € O} with0 < w < §, and 1 +v < a < 5-. Then for
every A € C with Re A > 0,

(11) A+ A~ = /OO e AT, (1) dt.

Consequently, if A,B € ©) and go,i(A) = gat(B) for 1 +v < a < 5= and all
t > 0, then A = B>,

Proof. Note first that as a consequence of (9),
o0
Ro(\) = / e MTL(t) dt
0
defines a bounded linear operator on X. Fix z € D(A%). Then by Theorem 3.9,
part (iv) and part (vii),
© oond

R,(M)A%z = —gl_r)l’(l) j e 7

(Ta(t)z) dt

= — lim [e_MTa(t)mEO + /\/oo e_’\t'ﬁl(t)xdt]

e—0 e
=z — AR,(MN)x.
Substituting z = (A + A%) !y with y € X, in the above expression we obtain
Ra(MA* A+ ATy = A+ A"y — AR (A + 447y

and hence

Ra(Ny = A+ 497Ny

If A,B € ©) and go:(A) = go(B) for 1+v < a < 5= and all t > 0, then from
(11), it follows that (A + A%)~! = (A + B*)~! for all A € C with Re A > 0. This
gives D(A%) = D(B®). Moreover, for all x € D(A%),
T = A+ANTTAN+ A%z = A+ BY) 1A+ A%z

Hence (A + B*)z = (A + A%)z and consequently A%z = Bz. O

4. APPLICATIONS TO ABSTRACT EVOLUTION EQUATIONS

Throughout this section, we assume that 4 € ©), with 0 <w < § and -1 <y < 0.
We make no assumption on the density of the domain of A. For simplicity of
notation, we write 7 (t) instead of T1(t), that is, {7 (¢) | te S%_w} is the analytic
semigroup of growth order ~ + 1 associated with A. Recall that this semigroup
satisfies an estimate

(12) IT@| < ct=O+D for all ¢ > 0,
where C > 0 is a constant. Finally, Q will denote the continuity set of 7(-).
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Consider the inhomogeneous linear abstract Cauchy problem

(LP) { Z((Ot)) +:A;to(jf) = f(t), 0<t<T,

where f : 10,7 — X and up € X are given. By a classical solution of (LP), we
understand a function u € C([0,T[; X)NC1(]0,7[; X) which takes values in D(A)
for all 0 < t < T and satisfies (LP).

Analogously to the case where — A generates a Cy-semigroup, one shows that if
(LP) has a classical solution, then this solution is unique since it is given by

(13) u(t) = T@®uo + /Ot T(t—s5)f(s)ds forall0 <t < T,

provided f € L'(0,T; X). As usual we call (13) the mild solution of (LP). We note
that in difference to the case where 7(-) is a Cy-semigroup, the mild solution (13)
is in general not continuous at £ = 0. A positive result for the existence and
uniqueness of a classical solution of (LP) is given next.

Theorem 4.1. Let A € ©), with 0 < w < %. Suppose f € L>*(0,T;X) satisfies
f(t) € D(A) for all0 < t < T, and f is Holder continuous with exponent ¥ > 1+,
that is, there exist K > 0 and 9 > 1+« such that

(14) lf&) = f( < K|t —s|? for all0 < t,s<T.

Then for every ug € 1, the mild solution (13) is the unique classical solution

of (LP).

Proof. Put vt fo (t—s)f(s)dsforall 0 <t <T. Then v € C([0,T[; X) with

lim v(t) = 0. Therefore as up € £, lim u(t) = uo.
t—0 t—0
Fix 0 < t < T. Writing

/ATt—s /ATt—s (s) — f(t))ds+/0tT(t—s)Af(t)ds

and taking into account the estimates (10) and (14), it follows easily that the

integral f(f AT (t — s)f(s)ds is absolutely convergent. Therefore v(t) € D(A) and
consequently, u(t) € D(A) since T (t)ug € D(A>) by Theorem 3.9, part (iii).

Next we prove that v is continuously differentiable at ¢. Let 0 < h < T — L.
Then

Ml vl L e s + /t TUxh=) 2 TUZ9) () s,

The Dominated Convergence Theorem and Theorem 3.9 yield

Jim, / Tt+h—5 7Tt_s)f(s)ds = _/0 AT (L = s)f(s) ds
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Further, we have
1 itk

. T(t+h—s)f(s)ds — f(t)

h
= %/0 T(s)(ft+h—s)— f(t—s))ds

h h
w3 [ TOUe-a-sw)as + ¢ [ (TEs0 - 1)
=L+ L+ 1.

From (12) and (14), it follows easily that ||I;|],||L2|]] < M~r*"1=7, where M > 0
is a constant. Hence I; and Iy converge to zero as b — 0. Since f(t) € D(A4) C Q,
given € > 0, there exists § > 0 such that

17T fF(t) — FOI < e forall0 < s <

and therefore ||I3]] < eforall 0 < h < 4.
This means v is differentiable from the right at ¢ and the right derivative v/, (t)
satisfies

W) = F0 = [ AT@=9f)ds = £ = vl

It remains to show that v/, is continuous. As f is continuous at ¢ we only have to
prove that the function

/0 ATt —s)f(s)ds = /OAT(t — s)(f(s) — f(t)) ds + /OAT(t —s)f(t)ds
= U)l(t) + U)Q(t)
is continuous at . Since
wt) = [ (TE=90)ds = ~(T0) =)o),

wo is continuous at t. Take 0 < h < T —¢t. Then

t+h
wr (t+ h) —wr(f) :/t AT(t+h—3)(f(s) — f(t+h))ds
+ /tAT(t—*—h—s)(f(t)—f(t+h))ds

+ /0 AT+ h—35)=Tt—39)](f(s)— F(t) ds.

Estimating the integrands using (10) and (14), it follows that the first two integrals
on the right converge to zero as h — 0. Moreover, since

NAT(t+h—s)(F(s) = FD))|| < Ct+h—s)"2(t-5)" < C(t—s) 27
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for all 0 < h < T — ¢, the Dominated Convergence Theorem yields
¢

lim A[T@+h—s) =Tt —9)](f(s)— f(t))ds = 0.

h—0t Jg
This gives wi (t + h) — wy (t) — 0 as h — 07. Next, assume 0 < h < . Then
un (t — h) — (t)

t—h
= /0 [AT (¢ = b= )(f(s) = J(t = B)) = AT(t = 5)(f(s) = /(1)) ] ds

- AT (t = s)(f(s) — f(t)) ds.

t—h
Obviously, the second integral converges to zero as h — 07. The first integral can
be written as

t—h
/O [AT(t = h = 5)(£(s) = f(t = ) = AT (¢ = 5)(£(5) — F() ] ds
h
= /0 AT(s)(f(t —h—s) — f(t—h)) ds
h

+ /h_ AT(8)(f(t— h—s) — f(t— ) + £(t) — F(t — ) ds

+ AT (s) (f(t —5) — f(t)) ds.

t—h
By reasoning as above, it can be shown that these three integrals converge to zero
as h — 07. Hence wy(t — h) —wy (t) — 0 as h — 0F. This completes the proof. O

Next, we consider the semilinear abstract Cauchy problem
I —
(SLP) W' (1) + Au(t) = f(tu®), 0<t<T,
u(0) = wup,
where f :]0,T[x X — X and ug € X are given. As in the linear case, by a classical
solution of (SLP), we mean a function u € C([0,T[; X)NC'(]0,7T[; X) which takes

values in D(A) for all 0 < ¢t < T and satisfies (SLP). As usual, a solution of the
integral equation

(TE) u(t) = T{t)u + /Ot Tt —s)f(s,u(s))ds forall 0 <t < T,

is called a mild solution of (SLP).
The following result is the analogue to [8, Theorem 2.4], where it is assumed
that A is sectorial.

Theorem 4.2. Let A € O}, with 0 < w < . Suppose f € L>(]0,T[ x X; X) and
there exists K > 0 such that

15)  f2) - iyl < Kllz -yl for all0 <t <T and z,y € X.
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Then for all ug € Q, there exists 7 > 0, sufficiently small, such that (SLP) has a
unique mild solution u € C([0,7]; X).

Proof. Fix § > 0. Since ug € §2, there is 7y > 0 such that
|7 (t)ug — uo]| < g forall0 <t <7y

Let B = sup{||f(t,uo)|| |0 <t <7} and 7 = min{r, (%)_1/7}, where

and (15), respectively.
with norm [[v|ly = supg<;<, lo(#),

C and K are the constants that appear in (12
Consider the Banach space Y = C([0,7]; X
and its closed and bounded subset

S = {veY | v(0) =up and [lv — ully < d}.

~—

The mapping F on Y given by
¢

Fu(t) = T({l)up + / Tt —s)f(s,u(s))ds forall 0 <t <,
0

satisfies Fu € Y and Fu(0) = ug for all w € Y. Similar to the proof of [8,
Theorem 2.4], one shows that £ maps S into S and that F : S — S is a contraction.
Hence from the Contractive Mapping Theorem, it follows that F* has a unique fixed
point u € S which is the unique, continuous in [0, 7], solution of (IE). a

Theorem 4.3. Let A € O}, with 0 < w < . Suppose f € L>(]0,T[ x X; X) and
there are constants L > 0 and 9 > 1+« such that

(16) 1/t 2) = fs; )l < L(jt=s|” +llz = yll)
for all 0 < t,s < T and z,y € X. Let ug € X such that there exists a local mild
solution u of (SLP), defined on [0, 7|, which satisfies u € CP(]0,7[; X) for some
B> 1+, and f(t,u(t)) € D(A) for all 0 <t < 7. Then u is the unique classical
solution of (SLP) defined on [0, 7].

A sufficient condition for the mild solution u to belong to C#(]0,7[; X) for some
8 > 1+, is that the following hold.

(i) —1<vy< -1
(i) Af(u(-) € L(]0,7[; X).
(iii) ug € D(A) and Aug € Q.

Proof. Consider the linear abstract Cauchy problem

{ V() + Av(t) = f(t,ull)), O<t<r,
v(0) = wup.

As f is bounded, the unique mild solution of this problem is given by

v(t) = Ttue + /Ot Tt —s)f(s,u(s))ds forall0 <t <.
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Hence v = u. In order to prove that v is a classical solution, by Theorem 4.1, we
only have to show that f(-,u(-)) is Holder continuous in ]0, 7| with an exponent
greater than 1+ «. But, this follows easily from (16).

Next, we prove that a mild solution u belongs to C~7(]0,7[; X) if it satisfies
(1)-(iii). Note that (i) implies —v > 1+v. Let 0 <t < 7and 0 < h < 7 —¢t. By
the Vector-Valued Mean Value Theorem (see, for example, [6, p. 158]),

t+h
llu(t+h) —u@l < [T+ h)uo — T()uoll + [ T+ R —s)f(s,uls))llds

¢
+ /0 I(T(t+h—s)—T(t—s))f(s,u(s))ds
h sup ||T(s)Augll + Mit™>h + Myh™”
0<s<T

IN

< Mh™,

where the constants My, Ms and M do not depend on ¢ or on i. Here we used that
as a conscquence of (iii), supg. o, ||7(s)Auo|| < co. This completes the proof. O

Finally, consider the incomplete second-order abstract Cauchy problem
u(t) = Au(t), t > 0,

(1acp) ( u(0) = wuo,
sup [[u(t)]| < oo,
t>0

where ug € X is given. By a classical solution of this problem, we understand
a function u € C%(]0,00[; X) N C(]0, o[ ; X) which takes values in D(A) for all
t > 0 and satisfies (IACP). It is evident that if the initial datum wug belongs to
the continuity set of the semigroup 7y /2(-) associated with A'/2, then the function
u(t) = Ty /2(t)uo for t > 0, is a classical solution of (IACP). In the same way as in
[16] it is proved that this solution is unique.
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