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a b s t r a c t

In this paper sufficient conditions to determine if a stationary subdivision scheme
produces Gibbs oscillations close to discontinuities are presented. It consists of the
positivity of the partial sums of the values of the mask. We apply the conditions
to non-negative masks and analyze (numerically when the sufficient conditions are
not satisfied) the Gibbs phenomenon in classical and recent subdivision schemes
like B-splines, Deslauriers and Dubuc interpolation subdivision schemes and the
schemes proposed in Siddiqi and Ahmad (2008).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and review

Subdivision schemes are powerful tools for generating curves and surfaces. They are used in many
applications in different fields such as computer aided geometric design, computer animation or computer
graphics. Following the notation used by Dyn and Levin in [1], a univariate stationary subdivision scheme
with finitely support mask a = {aj}j∈Z is defined as beginning with an initial sequence of finite data
f0 = {f0

i }i∈Z. New values are obtained through refinement at level k + 1, denoted by fk+1 = {fk+1
i }i∈Z. It

is the maximal set obtained by applying the rule:

(Safk)i = fk+1
i :=

∑
j∈Z

ai−2jfk
j , i ∈ Z.
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There are two rules to define the points on the level k + 1:

(Safk)2i = fk+1
2i =

∑
γ∈Z

a2γfk
i−γ , i ∈ Z,

(Safk)2i+1 = fk+1
2i+1 =

∑
γ∈Z

a2γ+1fk
i−γ , i ∈ Z.

(1)

We can represent these rules using algebraic formalism in terms of z-transforms. The symbol of the mask
a = {aj}j∈Z is defined as a(z) =

∑
j∈Zajzj . If a[k] is denoted as the k iterated symbol (see [1]), then, it is

known that a[k](z) =
∏k

l=1a(z2l−1). Therefore, if 0 ≤ l < 2k then

fk
2ki+l

= (Sk
af0)2ki+l = (Sa[k]f

0)2ki+l =
∑
γ∈Z

a
[k]
2kγ+l

f0
i−γ , (2)

with

a
[k]
j =

∑
i∈Z

a
[k−1]
i aj−2i, (3)

being a
[1]
j = aj , ∀ j. In what follows, we review the notion of convergence of the subdivision scheme:

Definition 1. A subdivision scheme Sa is uniformly convergent if for any initial data f0 = {f0
i }i∈Z, there

exists a continuous function f̂ such that for any closed interval I, f̂ satisfies:

lim
k→∞

sup
i∈2kI

|(Sk
af0)i − f̂(2−ki)| = 0. (4)

Then, we call S∞
a f0 = f̂ .

In this paper we will impose to the coefficients of the mask the following conditions:

C1. The mask a = {aj}j∈Z is defined as:⎧⎨⎩−1 ≤ aj ≤ 1, M ≤ j ≤ M + N,
aM , aM+N ̸= 0,
aj = 0, j > M + N or j < M,

(5)

being M < 0 and N fixed integers with N ≥ 2 and M + N > 0.
C2. The scheme Sa is convergent. Therefore, one necessary condition is∑

γ∈Z
a2γ =

∑
γ∈Z

a2γ+1 = 1. (6)

C3. For any f ∈ Cn, n ≥ 2 and any h > 0, with⎧⎨⎩f0
i = f(ih), i ∈ Z, if the scheme has primal parametrization,

f0
i = f

((
i − 1

2
)
h

)
, i ∈ Z, if the scheme has dual parametrization,

then

max
x∈R

|(S∞
a f0)(x) − f(x)| ≤ Khn,

being K a constant which depends on f , and it does not depend on h.

The order of approximation determines the precision of the subdivision scheme. Gibbs oscillations could
occur in the limit functions close to discontinuity zones. The aim of this paper is to analyze the properties of
the masks of the schemes in order to determine when these oscillations will appear. We describe the Gibbs
phenomenon using the definition by Gottlieb and Shu and characterize the schemes with Gibbs oscillations in
Section 2. We present some classical subdivision schemes and, finally, we apply these conditions to subdivision
schemes with non-negative masks.
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2. Gibbs phenomenon in stationary subdivision schemes

In this section we use the characterization of Gibbs phenomenon introduced by Gottlieb and Shu in [2].
Given a punctually discontinuous function f and its sampling fh defined by fi,h = f(ih) (fi,h = f(ih− 1

2 h) if
the scheme has dual parametrization), the Gibbs phenomenon deals with the convergence of (S∞fh) towards
f when h goes to 0. It can be delimited by two properties (see [2]).

1. Away from the discontinuity (we denote it as ξ) the convergence is rather slow and for any point x,

|f(x) − (S∞fh)(x)| = O(h). (7)

2. There is an overshoot, close to the discontinuity, that does not diminish with the reduction of h. Thus,

max
x∈R

|f(x) − (S∞fh)(x)| does not tend to zero with h. (8)

We will prove the following theorem that introduces some conditions to obtain stationary subdivision schemes
avoiding oscillations.

Theorem 2.1. Given 0 ≤ ξ ≤ h, let f be any function defined by

∀x ≤ ξ, f(x) = f−(x), f− ∈ Cn(] − ∞, ξ]),
∀x > ξ, f(x) = f+(x), f+ ∈ Cn([ξ, +∞[),

with n ≥ 2 and f−(ξ) > f+(ξ). Let Sa be a univariate stationary subdivision scheme with:

λ
[k]
l (i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
τ≤i

a
[k]
2kτ+l

, i < 0,

0, i = 0,∑
τ≥i

a
[k]
2kτ+l

, i > 0,

(9)

0 ≤ l < 2k, being a[k] defined in Eq. (3). Then, if λ
[k]
l (i) ≥ 0, ∀ i, k; and if h is sufficiently small we have:

P1. If |x| ≥ max{
⏐⏐M − 1

⏐⏐, ⏐⏐M + N + 1
⏐⏐}h, then

|f(x) − (S∞
a fh)(x)| = O(hn),

with n ≥ 2.
P2. If |x| ≤ max{

⏐⏐M − 1
⏐⏐, ⏐⏐M + N + 1

⏐⏐}h, there exists αh = O(h) such that

f1,h − αh ≤ f+(h) − αh ≤ (S∞
a fh)(x) ≤ f−(0) + αh = f0,h + αh. (10)

Proof. We follow the sketch of the proof presented by Amat et al. in [3].
For any iteration k, there exist p−

k , p+
k such that, for all i ̸∈ [p−

k , p+
k ] the evaluation (Sk+1

a fh)2i+l, l = 0, 1
is applied starting only from regular data.

Let us consider k = 0. As 0 ≤ ξ ≤ h, the discontinuity is between the values f0,h and f1,h, then by Eq. (1)
when γ = i and γ = i − 1, these values are used. By definition of the mask a, see Eq. (5), we only have to
determine when the values a2i−2, a2i−1, a2i, a2i+1 are different from zero. Therefore, we can define:

p−
0 = M − 1

2 , p+
0 = M + N

2 + 1. (11)



160 S. Amat et al. / Applied Mathematics Letters 76 (2018) 157–163

Let us consider k = 1. The points calculated using f0,h and f1,h at level k = 1 are i ∈ [p−
0 , p+

0 ],
then we have that p−

1 = M−1
2 + 2p−

0 = 3p−
0 , p+

1 = M+N
2 + 2p+

0 = 3( M+N
2 ) + 2. By induction,

p−
k = (2k+1 − 1)p−

0 = (2k+1 − 1)( M−1
2 ), p+

k = (2k+1 − 1)( M+N
2 ) + 2k. Then for the condition (C3) for

|x| ≥ max{
⏐⏐M − 1

⏐⏐, ⏐⏐M + N + 1
⏐⏐}h, (P1) is satisfied.

In order to prove the second part of the theorem, we consider the initial data and iterate the scheme.
By Eqs. (1) and (6) we have that

(Safh)2i =
∑

a2γfi−γ,h = fi,h +
∑

γ≤−1

(∑
τ≤γ

a2τ

)
(fi−γ,h − fi−γ−1,h) +

∑
γ≥1

(∑
τ≥γ

a2τ

)
(fi−γ,h − fi−γ+1,h)

= fi,h +
∑

γ≤−1
λ0(γ)(fi−γ,h − fi−γ−1,h) +

∑
γ≥1

λ0(γ)(fi−γ,h − fi−γ+1,h),

(Safh)2i+1 =
∑

a2γ+1fi−γ,h = fi,h +
∑

γ≤−1

(∑
τ≤γ

a2τ+1
)
(fi−γ,h − fi−γ−1,h)

+
∑
γ≥1

(∑
τ≥γ

a2τ+1
)
(fi−γ,h − fi−γ+1,h)

= fi,h +
∑

γ≤−1
λ1(γ)(fi−γ,h − fi−γ−1,h) +

∑
γ≥1

λ1(γ)(fi−γ,h − fi−γ+1,h),

(12)

being:

λl(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
τ≤i

a2τ+l, i < 0,

0, i = 0,∑
τ≥i

a2τ+l, i > 0,

(13)

with l = 0, 1. If i ≤ 0, then
(Safh)2i = fi,h + λ0(i − 1)(f1,h − f0,h) + O(h) = f0,h + λ0(i − 1)(f1,h − f0,h) + (fi,h − f0,h) + O(h),
(Safh)2i+1 = fi,h + λ1(i − 1)(f1,h − f0,h) + O(h)

= f0,h + λ1(i − 1)(f1,h − f0,h) + (fi,h − f0,h) + O(h).
(14)

If i > 0, then
(Safh)2i = fi,h + λ0(i)(f0,h − f1,h) + O(h) = f1,h + λ0(i)(f0,h − f1,h) + (fi,h − f1,h) + O(h),
(Safh)2i+1 = fi,h + λ1(i)(f0,h − f1,h) + O(h) = f1,h + λ1(i)(f0,h − f1,h) + (fi,h − f1,h) + O(h). (15)

Since 0 ≤ λ0(i), λ1(i), ∀ i, and f0,h − f1,h > 0, we obtain that if i ∈ [p−
0 , p+

0 ]

f1,h − O(h) ≤ (Safh)2i, (Safh)2i+1 ≤ f0,h + O(h).

If k = 2 we get by Eq. (2),

(S2
afh)4i = Sa(Safh)4i = (Sa[2]fh)4i =

∑
γ∈Z

a
[2]
4γfi−γ,h

= fi,h +
∑

γ≤−1

(∑
τ≤γ

a
[2]
4τ

)
(fi−γ,h − fi−γ−1,h) +

∑
γ≥1

(∑
τ≥γ

a
[2]
4τ

)
(fi−γ,h − fi−γ+1,h)

= fi,h +
∑

γ≤−1
λ

[2]
0 (γ)(fi−γ,h − fi−γ−1,h) +

∑
γ≥1

λ
[2]
0 (γ)(fi−γ,h − fi−γ+1,h).

(16)

By Eq. (3) with,

λ
[2]
0 (i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
τ≤i

(∑
l∈Z

ala4τ−2l

)
, i < 0,

0, i = 0,∑
τ≥i

(∑
l∈Z

ala4τ−2l

)
, i > 0.

(17)
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Analogously for 4i + 1, 4i + 2, 4i + 3. Therefore, if λ
[2]
l (i) ≥ 0, ∀ i, 0 ≤ l < 4, then

f1,h − O(h) ≤ (Sa[2]fh)4i, (Sa[2]fh)4i+1, (Sa[2]fh)4i+2, (Sa[2]fh)4i+3 ≤ f0,h + O(h).

Using the same reasoning, through an induction process, we obtain the result for all k. ■

2.1. Gibbs phenomenon in classical subdivision schemes

In this section we analyze the Gibbs phenomenon using Theorem 2.1 in some typical examples of
subdivision schemes (see [1]). We will present the limit functions obtained by the different schemes when
the initial data is a sampling of the function,

g(x) =
{

sin(πx), x ∈ [0, 0.5],
− sin(πx), x ∈ ]0.5, 1]. (18)

The limit function will be represented by a solid line while the initial data points will be represented with
• markers. The results can be seen in Table 2.

2.1.1. B-splines
A B-spline scheme of degree m > 0 (see [1]) is defined by the following mask:

(am)j =

⎧⎪⎨⎪⎩
1

2m

(
m + 1

j + 1 + [ m
2 ]

)
, −[m2 ] − 1 ≤ j ≤ m − [m2 ],

0, j > m − [m2 ] or j < −[m2 ] − 1.

(19)

Then, the B-spline schemes do not produce Gibbs phenomenon at the discontinuity zones because of the
positivity of the mask (Theorem 2.1). Since the limiting curves generated by the B-spline scheme of degree
m are Cm−1, then we can construct a subdivision scheme with high continuity that does not produce Gibbs
phenomenon. A known example is Chaikin’s algorithm (see [4]). This scheme is used, for example, to design
non-linear subdivision schemes avoiding Gibbs oscillations (see [3]). An example of the results obtained by
this scheme is presented in Table 2(a) for 1D subdivision and Table 2(g) for a 2D curve generation example.

2.1.2. Deslauriers and Dubuc interpolatory schemes [5]
The symmetric interpolatory schemes designed by Deslauriers and Dubuc in [5] consist of replicating the

even values, i.e. (Sddfk)2i = fk
i and calculating the odd values fk+1

2i+1 as the evaluation of the polynomial
interpolation at 2−k−1(2i + 1) obtaining the 2m values fk

i−m+1, . . . , fk
i+m. Then, the subdivision schemes

are defined as:

(Sdd1fk)2i+1 = 1
2fk

i + 1
2fk

i+1,

(Sdd2fk)2i+1 = − 1
16fk

i−1 + 9
16fk

i + 9
16fk

i+1 − 1
16fk

i+2,

(Sdd3fk)2i+1 = 3
256fk

i−2 − 25
256fk

i−1 + 150
256fk

i + 150
256fk

i+1 − 25
256fk

i+2 + 3
256fk

i+3.

(20)

When m = 1 (dd1), it is easy to see that this scheme does not produce Gibbs oscillations. When m = 2
the mask is dd2 = (− 1

16 , 0, 9
16 , 1, 9

16 , 0, − 1
16 ). Since λ1(−2) = − 1

16 , the scheme does not satisfy the sufficient
conditions of Theorem 2.1. In fact, in the numerical experiments we can clearly observe Gibbs oscillations.
See Table 2(b) for a 1D subdivision experiment and Table 2(h) for 2D subdivision. Finally, when m = 3 we
present the values of λ1 in Table 1. As λ1(−2) = − 22

256 , analogously to case m = 2, this scheme can produce
Gibbs oscillations. The results for this scheme are shown in Table 2(c) for a 1D subdivision experiment and
Table 2(i) for 2D subdivision.
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Table 1
Values of λ1 of the Deslauriers and Dubuc’s scheme with m = 3.

i −3 −2 −1 0 1 2
λ1(i) 3

256 − 22
256

1
2 0 − 22

256
3

256

Table 2
Figures (a), (b), (c), (d), (e), (f) present 1D subdivision experiments for the schemes Chaikin, Deslauriers and Dubuc with m = 2, 3,
(21) and (22) with ω = 0 and ω = 4. In this figures, the original sampling of function (18) is represented with • markers and the limit
function with a solid line. Figures (g), (h), (i), (j), (k), (l) present an application to 2D curve generation for the same schemes.

2.2. Subdivision schemes with non-negative masks

Using Theorem 2.1, we have the following corollary.

Corollary 2.2. Let Sa be a convergent subdivision scheme, with mask a = {aM , . . . , aM+N }. If aj > 0,
M ≤ j ≤ M + N then Sa does not produce Gibbs oscillations close to a discontinuity.

Examples of this type of schemes are B-spline subdivision schemes. We apply the corollary in the following
scheme designed by Siddiqi and Ahmad in [6]:

(Ssafk)2i = 1
122880fk

i−2 + 3119
122880fk

i−1 + 6719
20480fk

i + 31927
61440fk

i+1 + 15349
122880fk

i+2 + 81
40960fk

i+3,

(Ssafk)2i+1 = 81
40960fk

i−2 + 15349
122880fk

i−1 + 31927
61440fk

i + 6719
20480fk

i+1 + 3119
122880fk

i+2 + 1
122880fk

i+3.

(21)

A one dimensional example for this scheme is presented in Table 2(d). In Table 2(j) we present an experiment
for 2D curve generation for the same scheme.

Theorem 2.3 (Siddiqi and Ahmad [6]). The scheme Ssa defined in Eq. (21), converges and has smoothness
C6.

Also, Corollary 2.2 can be used in the schemes proposed in [7,8].
Finally, we show the following example designed by Wang and Li in [9]:

(Swlf
k)2i = 1

256
(
(9 − 7ω)fk

i−2 + (84 − 28ω)fk
i−1 + (126 + 14ω)fk

i + (36 + 20ω)fk
i+1 + (1 + ω)fk

i+2
)
,

(Swlf
k)2i+1 = 1

256
(
(1 − ω)fk

i−2 + (36 − 20ω)fk
i−1 + (126 − 14ω)fk

i + (84 + 28ω)fk
i+1 + (9 + 7ω)fk

i+2
)
.
(22)

Wang and Li calculate the conditions of the convergence proving the following theorem:
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Theorem 2.4 (Wang and Li [9]). The limiting curves generated by the subdivision scheme Swl are C0

continuous in the range −6.2 < ω < 6.2, C1 continuous in the range −5.4 < ω < 5.4, C2 continuous in the
range −5.3 < ω < 5.3, C3 continuous in the range − 13

3 < ω < 13
3 , C4 continuous in the range −4 < ω < 4,

C5 continuous in the range −3 < ω < 3, C6 continuous in the range −2 < ω < 2, and C7 when ω = 0.

If the parameter ω ∈ [−1, 1] then the masks are positive since λ0(−2) = 1
256 (1+ω) and λ1(2) = 1

256 (1−ω).
Thus, by Corollary 2.2, these schemes do not produce Gibbs oscillations. Some examples are presented in
Table 2(e) and (f) when ω = 0 and when ω = 4 respectively. In Table 2(k) and (l) we present two experiments
for 2D curve generation for the same scheme and the same parameters.

3. Conclusions

In this paper the behavior of stationary subdivision schemes in the presence of strongly varying data,
and in particular the possible apparition of Gibbs phenomenon, has been analyzed. A way to construct
subdivision schemes without Gibbs oscillations has been showed. Using some sufficient conditions, we have
proved that the schemes with non-negative masks do not produce Gibbs oscillations. Therefore, this result
has been used for schemes with high continuity.
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