
Third order iterative methods without using

second Fréchet derivative

Great quantity of general problems may be reduced to Þnding zeros. The roots
of a nonlinear equation cannot in general be expressed in closed form. Thus, in
order to solve nonlinear equations, we have to use approximate methods. One
of the most important techniques to study these equations is the use of itera-
tive processes, starting from an initial approximation x0, called pivot, successive
approaches (until some predetermined convergence criterion is satisÞed) xi are
computed , i = 1, 2, . . . , with the help of certain iteration function Φ : X → X,

xi+1 := Φ(xi), i = 0, 1, 2 . . . (1)

Certainly Newton�s method is the most useful iteration for this purpose. The
advance of computational techniques has allowed the development of some more
complicated iterative methods in order to obtain greater order of convergence as
Chebyshev and Halley methods. In these methods we have to evaluate Þrst and
overall second derivatives. These difficulties are usually harder than the advantage
because of the order of these methods. So, two order iterative methods are widely
used.

In this paper, we present a modiÞcation of classical third order iterative me-
thods. The main advantage of these methods is they do not need evaluate any
second derivative, but having the same properties of convergence than the classical
third order methods. The methods will depend, in each iteration, of a parameter
αn. These parameters will be a control of the good approximation to the second
derivatives. We will use second order divided differences. We will study their
convergence by recurrence relations and we will test their competitively with res-
pect the classical methods. They seemed to work very well in our preliminary
numerical results.

Let F : B ⊂ X → X a nonlinear operator, X a Banach space and B an open
convex set.

If we are interesting to approximate a solution of the nonlinear equation

F (x) = 0, (2)
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Chebyshev method can be written as

xn+1 = xn −
µ
1 +
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F (xn) , (3)

where
LF (xn) =

¡
F 0 (xn)

¢−1
F 00 (xn)

¡
F 0 (xn)
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F (xn) .

Our modiÞcation will be

xn+1 = xn −
µ
1 +

1

2
LF (xn)
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F 0 (xn)
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F (xn) , (4)

where
LF (xn) =
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F 0 (xn)

¢−1
F (xn) ,

DF (xn) = [xn − αnF (xn), xn, xn + αnF (xn);F ],

and [·, ·, ·;F ] denotes the second divided difference of the operator F .
The method will depend, in each iteration, of a parameter αn. This parameter

will be a control of the good approximation to the second derivative. In practice,
{αn} will be a increasing sequence in (0, 1], and ||αnF (xn)|| will be small enough.
Remark 1 In order to control the stability in practice, the αn can be computed
such that

tolc << ||αnF (xn)|| ≤ tolu
where tolc is related with the computer precision and tolu is a free parameter for
the user.

Taylor series expansions show that with these approximations the method (in
the scalar case) can be written as

xn+1 = xn −
µ
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f (xn))
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f (xn) , (5)

thus, if the method converges, it has order three.
We are interesting to obtain sufficient conditions of convergence. We establish

a convergence theorem using recurrence relations in a similar way that Gutiérrez
and Hernández.

We have tested it on some nonlinear equations. We present a comparison with
the classical Chebyshev method.


