1. **(0.5 puntos)** Justifique si existe una función

\[f (x + iy) = u (x, y) + iv (x, y), \]

que sea analítica en \(\mathbb{C} \) con

\[u (x, y) = e^{y/x}. \]

2. **(1 punto)** Encuentre en \(\mathbb{C} \) los complejos para los cuales sucede

\[\cos (2z) + 2\sqrt{5}i = 0 \]

3. **(1.5 puntos)** Obtenga la serie de Laurent centradas en el punto y región que se indican:

\[f (z) = \frac{1}{z^2 - 2z + 2} \quad \text{en} \quad z_0 = 0 \quad y \quad 0 < |z| < 1 \]

4. **(1 punto)** Calcule la siguiente integral mediante la fórmula integral de Cauchy, razonando convenientemente que se puede aplicar dicho método:

\[\frac{1}{\pi i} \int_{\gamma} \frac{ze^{\gamma z}}{(z - \sqrt{2})^3} \, dz; \quad \gamma (t) = 2e^{it}, t \in [0, 2\pi] \]

5. Calcule las siguientes integrales mediante el teorema de los residuos:

 a) **(1 punto)**

 \[\int_{\gamma} \frac{\sin (z - \pi)}{(z - \pi) (z - \pi/4)} \, dz; \quad \gamma (t) = \pi + \pi e^{it}, t \in [0, 2\pi] \]

 b) **(1.5 punto)**

 \[\int_{0}^{2\pi} \frac{1}{a + \cos t} \, dt; \quad a > 1 \]

6. **(1.75 puntos)** Resuelva mediante la transformada de Laplace el siguiente problema del valor inicial:

\[
\begin{aligned}
\frac{d^2 y}{dt^2} (t) + 2 \frac{dy}{dt} (t) + y (t) &= 2 + (t - 3) h_3 (t) \quad t \geq 0 \\
y (0) &= 2 \\
y' (0) &= 1
\end{aligned}
\]

donde \(h_3 (t) \) es la función de Heaviside de parámetro 3.

7. **(1.75 puntos)** Resuelva mediante la transformada de \(\mathcal{Z} \) el siguiente problema del valor inicial:

\[
\begin{aligned}
y_{n+2} - 2y_n &= 2 \quad n \geq 2 \\
y_0 &= 0 \\
y_1 &= \sqrt{2}
\end{aligned}
\]