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Abstract

A six degree of freedom (6-DOF) nonlinear mathematical model for a subma-
rine is proposed. Then, the problem of manoeuvrability control for this vehicle
is formulated as an unconstrained optimal control problem which is solved by
using a gradient descent method. Simulation results presented are rooted by
three requirements which are of a major importance in naval industry, and they
are compared to a classical linear model.

Index terms. Manoeuvrability control, submarine, optimal control, gradient
descent method.

1 Introduction

In the development of a naval architecture tool for the guidance and autopilot of
a submarine is important to choose both an accurate mathematical model for the
equations of motion and a suitable control strategy. In spite of the practical im-
portance of this matter, there are not so much works available in the literature,
probably because of its applications in military technology. In fact, most of the
results which are used by naval industry are based on simplified (meanly linear) ver-
sions of more accurate nonlinear models or on nonlinear models with lower degrees
of freedom. Nowadays, the following three challenges deserve an special attention
at the practical level:

(i) optimality of sizing rudders (decision to be taken during the design state),
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(ii) design of an automatic submarine autopilot to be able to guarantee smooth
manoeuvres as physically admissible in order to reduce hydraulic oil consump-
tion and so reduce noise generation, and

(iii) reduction of vulnerability due to excessive movements in complex scenarios
(e.g., littoral waters, missile launching or aggressive mining).

Having this in mind, firstly, a vehicle dynamics model based on a combination of
theory and empirical data is proposed in this work. Indeed, taking as a starting point
the standard DTNSRDC nonlinear equations of motion for an underwater vehicle
[5, 7, 9] and adapting these general equations to the particular characteristics of a
prototype developed by the company Navantia S.A. Cartagena Shipyard (Spain), we
propose a mathematical model composed of a highly coupled and nonlinear system
of ordinary differential equations (ODEs) with six degrees of freedom.

The second aim of this work is to design numerically an appropriate nonlin-
ear control system which may be used for simulation of the usual depth and course
keeping manoeuvres (among others) as well as to provide some useful information to
deal with the above three points (i)-(iii). To this end, we describe the controller de-
sign as an unconstrained optimal control problem and implement a gradient descent
method to solve it. This is an iterative algorithm which requires a good initialization
to get a rapid convergence. To achieve a good initialization and also for comparison
purposes, we derive from the original nonlinear model a simplified (4-DOF) linear
mathematical model and solve it by using classical results on controllability theory
[8].

Finally, numerical results are given to show the resulting nonlinear manoeuvres
comparing to the linear ones and also the result for nonlinear manoeuvres which
cannot be done with the linear model because of its restrictions on the variables
values.

2 Vehicle modeling

The three-dimensional equations of motion for a marine vehicle are usually described
by using two coordinate frames: the moving coordinate frame which is fixed to the
vehicle and is called the body-fixed reference frame, and the earth-fixed reference
frame which is called the world reference frame. The origin of body coordinates is
at the half point along the symmetric longitudinal axis. Typically, this point is not
so far from the center of buoyancy (CB) and from the center of gravity (CG). The
body axes are longitudinal pointing in the nominal forward direction of the vehicle,
lateral pointing through the right hand side of the level vehicle, and downward
through the nominal bottom of the vehicle. The world coordinate system is defined
by three orthogonal axes originating at an arbitrary local point at the ocean surface.
North corresponds to x−axis, East corresponds to y−axis and increasing depth
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corresponds to z−axis. The position and orientation of the vehicle are described in
the world system while the linear and angular velocities are expressed in the body-
fixed coordinate system. These quantities are defined according to SNAME notation
[7] as:

η (t) = [η∗1 (t) , η∗2 (t)] , η1 (t) = [x (t) , y (t) , z (t)]∗ , η2 (t) = [φ (t) , θ (t) , ψ (t)]∗

ν (t) = [ν∗1 (t) , ν∗2 (t)] , ν1 = [u (t) , v (t) , w (t)]∗ , ν2 (t) = [p (t) , q (t) , r (t)]∗ .

(1)
Here a∗ stands for the transpose of vector a, η1 denotes the position of the vehicle
in the world system, η2 is the orientation in the same reference system, ν1 is the
vector of linear velocities in the body-fixed frame (where as usual u is surge velocity,
v is sway velocity, and w is heave velocity), and finally ν2 is the vector of angular
velocities in the body-fixed reference system (p is roll rate, q is pitch rate, and r is
yaw rate). We refer to [7] for a detailed description of these two reference frames as
well as the variables η(t) and ν(t).

The kinematic equations which relate the body-fixed reference frame to the world
reference system can be expressed in vector form as:




·
η1

·
η2


 =




J1 (η2) 03×3

03×3 J2 (η2)







ν1

ν2


 (2)

where dot means derivative with respect to time, and the matrices J1 (η2) and J2 (η2)
are given respectively by

J1 (η2) =




cosψ cos θ − sinψ cos θ + cos ψ sin θ sinφ sinψ sinφ + cosψ cosφ sin θ

sinψ cos θ cosψ cosφ + sin φ sin θ sinψ − cosψ sinφ + sin θ sinψ cosφ

− sin θ cos θ sinφ cos θ cosφ




(3)
and

J2 (η2) =




1 sin φ tan θ cosφ tan θ

0 cos φ − sinφ

sinφ/ cos θ cosφ/ cos θ


 . (4)

The dynamic equations of motion can be derived from a Newton-Euler formula-
tion which is based on Newton’s second law. The development of the functional form
of the hydrodynamic forces and moments is by now well-known [5, 7, 9]. Specific
values of the particular hydrodynamic coefficients which appear in the equations
depend on the specific vehicle and, therefore, would require modification if applied
to other vehicles. The values of the coefficients used in this work have been ex-
perimentally obtained in deeply submerged conditions by using the scaling model
showed in Figure 1 and are listed in Appendix. A detailed study of the mentioned
model as well as several captive manoeuvring tests appear in the internal report [2].
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Figure 1: Appearance of the model studied in this work (picture taken from [2]).

According to these considerations, the dynamics equations of motion for the
specific submarine considered in this work read as follows:

AXIAL FORCE EQUATION:

m[u̇− vr + wq − xG(q2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] (5)

=
ρ

2
l4[X

′
qqq

2 + X
′
rrr

2 + X
′
rprp + X

′
q|q|q|q|] +

ρ

2
l3[X

′
u̇u̇ + X

′
vrvr + X

′
wqwq]

+
ρ

2
l2[X

′
uuu2 + X

′
vvv

2 + X
′
www2 + X

′
w|w|w|w|]

+
ρ

2
l2[X

′
δrδr

u2δ2
r + X

′
δsδs

u2δ2
s + X

′
δbδb

u2δ2
b ]− (W −B) sin(θ)

+ρT (1− t)

where

T =
(

KT0 + KTJ
(1− wf )

nD
u + KTJ2

(1− wf )2

(nD)2
u2

+KTJ3

(1− wf )3

(nD)3
u3 + KTJ4

(1− wf )4

(nD)4
u4

)
n2D4
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LATERAL FORCE EQUATION:

m[v̇ − wp + ur − yG(r2 + p2) + zG(qr − ṗ) + xG(qp + ṙ)] (6)

=
ρ

2
l4[Y

′
ṙ ṙ + Y

′
ṗ ṗ + Y

′
r|r|r|r|+ Y

′
pqpq]

+
ρ

2
l3[Y

′
r ur + Y

′
pup + Y

′
v̇ v̇ + Y

′
wpwp]

+
ρ

2
l2[Y

′
∗u

2 + Y
′
vuv + Y

′
v|v|Nv|(v2 + w2)

1
2 |]

+
ρ

2
l2[Y

′
δr

u2δr + Y
′
δrηu

2δr(η − 1
C

)C]

+
ρ

2
l2Y

′
vwNvw + (W −B) cos(θ) sin(φ)

NORMAL FORCE EQUATION:

m[ẇ − uq + vp− zG(p2 + q2) + xG(rp− q̇) + yG(rq + ṗ)] (7)

=
ρ

2
l4[Z

′
q̇ q̇ + Z

′
q|q|q|q|+ Z

′
rrr

2] +
ρ

2
l3[Z

′
ẇẇ + Z

′
quq + Z

′
vpvp + Z

′
vrvr]

+
ρ

2
l2[Z

′
∗u

2 + Z
′
wuw + Z

′
vvv

2]

+
ρ

2
l2[Z

′
|w|u|w|+ Z

′
wwN

∣∣∣w(v2 + w2)
1
2

∣∣∣]

+
ρ

2
l2

[
Z
′
δs

u2δs + Z
′
δb

u2δb + Z
′
δsηu

2δs

(
η − 1

C

)
C

]

+(W −B) cos(θ) cos(φ)

ROLLING MOMENT EQUATION:

Ixṗ + (Iz − Iy)qr − Izxṙ − Izxpq + Iyzr
2 − Iyzq

2 + Ixypr − Ixy q̇ (8)

myGẇ −myGuq + myGvp−mzGv̇ + mzGwp−mzGur

=
ρ

2
l5K

′
ṗṗ +

ρ

2
l5K

′
ṙṙ +

ρ

2
l5K

′
qrqr +

ρ

2
l5K

′
p|p|p|p|+

ρ

2
l5K

′
r|r|r|r|

+
ρ

2
l4K

′
pup +

ρ

2
l4K

′
rur +

ρ

2
l4K

′
v̇v̇ +

ρ

2
l4K

′
wpwp

+
ρ

2
l3K

′
∗u

2 +
ρ

2
l3K

′
vuv +

ρ

2
l3K

′
v|v|v|v|+

ρ

2
l3K

′
δr

u2δr

+(YGW − YBB) cos(θ) cos(φ)− (ZGW − ZBB) cos(θ) sin(φ)

−ρQ (9)

where

Q =
(

KQ0 + KQJ
(1− wf )

nD
u + KQJ2

(1− wf )2

(nD)2
u2

+KQJ3

(1− wf )3

(nD)3
u3 + KQJ4

(1− wf )4

(nD)4
u4

)
n2D5
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PITCHING MOMENT EQUATION:

Iy q̇ + (Ix − Iz)rp− (ṗ + qr)Ixy + (p2 − r2)Izx + (qp− ṙ)Iyz (10)

+m[zG(u̇− vr + wq)− xG(ẇ − uq + vp)]

=
ρ

2
l5[M

′
q̇ q̇ + M

′
rprp + M

′
q|q|q|q|+ M

′
rrr

2] +
ρ

2
l4[M

′
ẇẇ + M

′
quq + M

′
vrvr]

+
ρ

2
l3

[
M

′
∗u

2 + M
′
wuw + M

′
vvv

2 + M
′
w|w|Nw

∣∣∣(v2 + w2)
1
2

∣∣∣
]

+
ρ

2
l3[M

′
vwvw + M

′
|w|u|w|+ M

′
ww|w(v2 + w2)

1
2 |]

+
ρ

2
l3

[
M

′
δs

u2δs + M
′
δb

u2δb + M
′
δsηu

2δs

(
η − 1

C

)
C

]

−(xGW − xBB) cos(θ) cos(φ)− (zGW − zBB) sin(θ)

YAWING MOMENT EQUATION:

Iz ṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx (11)

+m[xG(v̇ − wp + ur)− yG(u̇− vr + wq)]

=
ρ

2
l5[N

′
ṙṙ + N

′
r|r|r|r|+ N

′
ṗṗ + N

′
pqpq] +

ρ

2
l4[N

′
pup + N

′
rur + N

′
v̇v̇]

+
ρ

2
l3[N

′
∗u

2 + N
′
vuv + N

′
v|v|Nv

∣∣∣(v2 + w2)
1
2

∣∣∣]

+
ρ

2
l3

[
N
′
δr

u2δr + N
′
δrηu

2δr

(
η − 1

C

)
C

]

+
ρ

2
l3N

′
vwNvw

+(xGW − xBB) cos(θ) sin(φ) + (yGW − yBB) sin(θ)

These equations include the functional form of both mechanical and hydrody-
namic added mass, coriolis and centripetal forces, damping forces and moments due
to skin friction and vortex shedding, restoring (i.e., gravitation and buoyant) forces
and moments, propeller forces and moments, and rudders control forces. We refer
to [7, 10] for a detailed description and analysis of these forces and moments.

For the specific vehicle considered in this work, control inputs come in the form
of thruster forces and moments and may be expressed as a vector

u (t) = [δb (t) , δs (t) , δr (t)] , (12)

where δb is deflection of bow plane, δs is deflection of stern plane, and δr is deflection
of rudder.

From a pure mathematical point of view, it is important to point out the following
facts in the proposed model:

• The high nonlinear character of the equations and the high order of the system
(12 equations).
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• The lack of differentiability of the system which is caused for several terms
involving non-differentiable functions such as the absolute value and squared
roots.

• The controls appear in nonlinear (quadratic) form.

Because of these three difficulties, it is certainly hard to study the model at the
pure mathematical level (existence, uniqueness of solutions, etc.). Indeed, very few is
known in the mathematical literature concerning to the control of non-differentiable
systems with controls appearing in nonlinear form. We refer to [3] for a recent
related paper. Since this work is mainly addressed to numerical simulations and
application to a real-life engineering problem, we do not enter here in the above
theoretical question which, however, will be analyzed in a future work.

Both kinematic equations (2) and dynamic equations (5)-(11) are the equations
of motion for the submarine. It is convenient to write down these equations in a
more compact form. To this end, we introduce the state vector

x (t) = [x (t) , y (t) , z (t) , φ (t) , θ (t) , ψ (t) , u (t) , v (t) , w (t) , p (t) , q (t) , r (t)] .

After some simple algebra, the set of equations (2) and (5)-(11) can be rewritten in
the form

M
·
x (t) = f̃ (x (t) ,u (t)) (13)

where the matrix M is given by

M =

[
16×6 06×6

06×6 M′

]
(14)

and

M′ =
[
M′

1 M′
2

]

where

M′
1 =




m− ρl3

2 X ′
·
u

0 0

0 m− ρl3

2 Y ′
·
v

0

0 0 0

0 −
(

ρ
2 l4K ′

·
v

+ mzG

)
myG

mzG 0 −
(

ρl4

2 M ′
·
w

+ mxG

)

−myG mxG − ρl4

2 N ′
·
v

0
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and

M′
2 =




0 mzG −myG

−
(

ρl4

2 Y ′
·
p

+ mzG

)
0 mxG − ρl4

2 Y ′
·
r

m− ρl3

2 Z ′·
w

−
(

ρl4

2 Z ′·
q
+ mxG

)
myG

Ix − ρl5

2 K ′
·
p

−Ixy −
(

ρl5

2 K ′
·
r
+ Izx

)

−Ixy Iy − ρl5

2 M ′
·
q

−Iyz

−
(

ρl5

2 N ′
·
p
+ Izx

)
−Iyz Iz − ρl5

2 N ′
·
r




Since M is invertible, (13) transforms into

·
x (t) = f (x (t) ,u (t)) (15)

where f = M−1f̃ .
Once we have at our disposal the equations of motion for the underwater vehicle,

we are in a position to design a controller to simulate arbitrary manoeuvres.

3 Nonlinear controller design

The control problem can be formulated as follows: given an initial state x (0) = x0 ∈
R12 and a desired final target xT , the goal is to calculate the vector of control u (t)
which is able to draw our system from the initial state x0 to (or near to) the final
one xT in a given time T . In mathematical terms, this problem may be formulated
as the unconstrained optimal control problem





Minimize in u : J (u) = Φ
(
x (T ) ,xT

)
+

∫ T
0 F (x (t) ,u (t)) dt

subject to
·
x (t) = f (x (t) ,u (t))
x (0) = x0

(16)

Here Φ
(
x (T ) ,xT

)
and F (x (t) ,u (t)) are two generic functions which can be chosen

as desired. At this point, a pair of remarks is in order:

• It is evident that the original problem includes some constraints on both the
control inputs and the state variables. This is very important in order to
choose an appropriate numerical control method but, at the practical point of
view, all of these restrictions can be easily satisfied by taking the final time T

large enough. For this reason, in this preliminary work we will not consider
the above mentioned constraints.

• As for the cost function J (u) , we have written it in a general format because
the method we plan to develop in the remaining can be applied in this general
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setting. Concerning to the particular problem of control of the manoeuvrability
for an underwater vehicle, which is the main goal of this work, it is quite natural
to take

Φ
(
x (T ) ,xT

)
=

12∑

j=1

αj

(
xj (T )− xT

j

)2
(17)

with αj > 0 penalty parameters, and

F (x (t) ,u (t)) =
3∑

j=1

βj (uj (t))2 (18)

with βj > 0 another weight parameters. Therefore, the cost function J (u)
is a commitment between reaching the final target and a minimal expense of
control on having done the corresponding manoeuvre.

There are several optimization methods which can be applied to solve (16). Due
to the complexity of the state law and the large number of variables involved in the
problem, it is quite reasonable to use a gradient descent method. Briefly, the scheme
of this method consists of the following main steps:

- Initialization of the control input u0.

- For k ≥ 0, iteration until convergence (e.g.
∣∣J (

uk+1
)− J

(
uk

)∣∣ ≤ ε
∣∣J (

u0
)∣∣ ,

with ε > 0 a suitable tolerance) as follows:

uk+1 = uk − λ∇J
(
uk

)

where λ > 0 is a fixed step parameter, and ∇J
(
uk

)
is the gradient of the cost

function.

The crucial step is the computation of the gradient ∇J
(
uk

)
. This can be ob-

tained by using the adjoint method which is described next:

1. Given the control uk, k ≥ 0, solve the state equation
{ ·

x (t) = f
(
x (t) ,uk (t)

)

x (0) = xk (0)

to obtain the state xk+1 (t) .

2. With the pair
(
uk (t) ,xk+1 (t)

)
, solve the linear backward equation for the

adjoint state p (t)
{ ·

p (t) = −∇xF
(
xk+1 (t) ,uk (t)

)− [∇xf
(
xk+1 (t) ,uk (t)

)]∗ p (t)

p (T ) =
·
Φ

(
xk+1 (T ) ,xT

)

where ∇x is the gradient with respect to the state variable x. Thus, we obtain
pk+1 (t) .
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3. Finally,

∇J
(
uk

)
= ∇uF

(
xk+1 (t) ,uk (t)

)
+

[
∇uf

(
xk+1 (t) ,uk (t)

)]∗
pk+1 (t)

where now ∇u is the gradient with respect to u.

Here A∗ stands for the transpose of A. We refer to [1, 4] for more details on this
method. A main drawback of a gradient algorith is the low speed of convergence.
This difficulty can be overcome by choosing a good initialization for the algorithm.
For this reason and also to be able to compare results obtained from the above
nonlinear model with more common linear models, we present and study a linear
model in the next section.

4 Initialization of the nonlinear controller: A linear

model

The material of this section has been essentially taken from [8], but for the sake of
completeness we include it here. Taking as a starting point the set of equations (2)
and (5)-(11), and making the additional assumptions:

• constant surge velocity u0,

• deeply submerged conditions,

• small variations in pitch and yaw Euler angles, and

• some particular geometrical hypotheses on the submarine,

we obtain a mathematical linear model in the form
{

ẋ (t) = Ax (t) + Bu (t)
x (0) = x0 (19)

where t is the time variable,

x (t) =
[
v (t) , r (t) , ψ (t) , y (t) , w (t) , q (t) , θ (t) , z (t)

]

is the state variables vector (as before, here v is sway velocity, r yaw rate, ψ yaw
Euler angle, y position along y-axis, w heave velocity, q pitch rate, θ pitch Euler
angle, and z is depth),

u (t) =
[
δb (t) , δs (t) , δr (t)

]
,

is the control variables vector (with δb deflection of bow plane, δs deflection of stern
plane, and δr deflection of rudder), A is a 8 × 8 matrix and B is a 8 × 3 matrix.
Precisely,

A = M−1B, B = M−1C
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where

M =




m′ − Y ′
·
v

−Y ′
·
r

lπ
180 0 0 0 0 0 0

−N ′
·
v

m′
(
k2

zz −N ′
·
r

)
lπ
180 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 m′ − Z ′·

w
−Z ′·

q
l 0 0

0 0 0 0 −M ′
·
w

m′(k2
yy −M ′

·
q
) lπ
180 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




,

B =




Y ′
v

u0
l (Y ′

r −m′) u0π
180 0 0 0 0 0 0

N ′
v

u0
l N ′

r
u0π
180 0 0 0 0 0 0

0 1 0 0 0 0 0 0
1 0 u0π

180 0 0 0 0 0
0 0 0 0 Z ′w

u0
l

(
Z ′q + m′) u0π

180 0 0
0 0 0 0 M ′

w
u0
l M ′

q
u0π
180 − 2

ρl4
(ZGW − ZBB) π

180 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 −u0π

180 0




,

and

C =




Y ′
δr

u2
0π

l180 0 0

N ′
δr

u2
0π

l180 0 0
0 0 0
0 0 0

0 Z ′δs

u2
0π

l180 Z ′δb

u2
0π

l180

0 M ′
δs

u2
0π

l180 M ′
δb

u2
0π

l180

0 0 0
0 0 0




.

The dimensionless linear hydrodynamic coefficients which appear in these matrices
where obtained in [2] and are listed in the following table.
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m′ = 1.71e− 02 Y ′
v̇ = −1.80e− 02 Y ′

ṙ = −8.30e− 04
L = 60 N ′

v̇ = 6.80e− 04 kzz = 0.849
N ′

ṙ = −8.14e− 04 Z ′ẇ = −1.46e− 02 Z ′q̇ = −7.00e− 05
M ′

ẇ = −1.40e− 03 kyy = 1.047 M ′
q̇ = −6.37e− 04

Y ′
v = 0 u0 = 8 Y ′

r = 0
N ′

v = −2.30e− 02 N ′
r = 0 Z ′w = 0

Z ′q = 0 M ′
w = 6.26e− 03 M ′

q = 0
ρ = 1000 Zg = 0.089 W = 435
Zb = 0 B = 435

Y ′
δr

= 9.03e− 03 N ′
δr

= −4.06e− 03 Z ′δs
= −6.25e− 03

M ′
δs

= −2.45e− 03 Z ′δb
= −3.19e− 03 M ′

δb
= 6.38e− 04

Next, we recall the linear controllability problem (LCP) we are interested in:

(LCP) For a fixed final time T and given an initial state x0 ∈ R8 and a final state
xT ∈ R8, we wonder if there exists a control variable u (t) , 0 ≤ t ≤ T, such
that the solution of (19) is driven from x0 to xT at time T, i.e.,

x (0) = x0 and x (T ) = xT .

By using linear finite-dimensional controllability theory it is not so hard to show
that this problem has a positive answer. Indeed, as is well-known (see for instance
[11]), the linear system (19) is exactly controllable at time T if and only if the
controllability matrix

QC =
[
B AB A2B · · · · · · A7B

]

has maximal range. In our situation, it is very easy to see that this is so, i.e., the
range of QC is equal to 8. Moreover, when controllability holds, the control u (t) is
explicitly given by

u (t) = B∗eA∗(T−t) [P (T )]−1 (
xT − eATx0

)
, 0 ≤ t ≤ T, (20)

where A∗, B∗ are the transposes of A and B, respectively, eAT is the exponential
matrix of AT , and [P (T )]−1 is the inverse of the controllability Gramiam matrix

P (T ) =
∫ T

0
eATBB∗eA∗tdt. (21)

Once the control u (t) is determined, the solution x (t) of (19) is obtained in the
closed form

x (t) = eAtx0 +
∫ t

0
eA(t−s)Bu (s) ds. (22)

It is also important to notice that the control (20) is optimal in the sense that it is
the one of minimal L2

(
0, T ;R3

)
-norm (see [6]).
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5 Numerical simulations

In this section, we show some numerical results obtained by implementing the ap-
proach described in the preceding sections in Matlabr for realistic manoeuvres like
depth change and turning. At each iteration the state and adjoint state equations
have been solved by using the ODE45 Matlab function, which is a one-step solver
based on an explicit Runge-Kutta (4,5) formula (see [12]). Our goal is to provide
some useful numerical information to address challenges (i)-(iii) described in the
introduction. For a depth change manoeuvre, we consider two different cases:

Case 1. In order to study optimality of sizing rudders (which is a typical example
of a pre-contract navy requirement) we take:





λ = 0.001 ε = 10−6

α2 = α3 = α5 = 1, αj = 0, j 6= 2, 3, 5
βj = 0, j = 1, 2, 3
x (0) = (0, 0, 400, 0, 0, 0, 2.5, 0, 0, 0, 0, 0)
xT = (0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0) , T = 200.

(23)

That is, we penalize only the final value for the state variables y (t) , z (t) and
θ (t) . We want the submarine goes from a depth of 400m to 50m and, in
addition, the final pitch angle must be equal (or near) to zero in order to
continue the movement with the final value on the control variable without
changes in depth.

The results are shown in Figures 2-8. Dotted lines (· · · ) correspond to results
obtained with the linear model described in Section 4. Continuous lines (—)
represent the evolution of the nonlinear model for the optimal linear controls,
i.e., first iteration of the gradient method. Dashed lines (- - -) display results
for the gradient method and for the set of parameters (23). We refer to this
case as to nonlinear r. Finally, dash/dot lines (-·-·-·) show results for the
gradient method and for the set of parameters as in (23) where the values
for αj are replaced by α3 = 1 and αj = 0 for j 6= 3, i.e., we only constraint
depth z (t) . This last case is named nonlinear 1. As shown in Figures 3, 4, 6
and 7 dash/dot and dashed lines are essentially the same. However, there is
a difference between them in Figures 2 and 5. Obviously, the reason for these
results is that in nonlinear r we force the submarine to finish near to zero
position on the y−axis. Therefore, δr needs to turn more than in nonlinear 1,
where this constraint is inactive. Finally, Figure 8 shows the evolution of the
cost function (with respect to the number of iterations) for the cases nonlinear
r and nonlinear 1. An exponential decay is observed in both cases. We do not
include pictures for the rest of state variables because they take they are not
relevant in this manoeuvre.
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As is typical in a gradient algorithm, results depend on the initialization. For
instance, when we initiate our algorithm with zero value for u (t) , 0 ≤ t ≤ T,

after convergence, we obtain different results: the costs for the case nonlinear
1 are the same and very close to zero, but the optimal controls are slightly
different; for the case nonlinear r, the final optimal cost is higher than in the
case tested before, and the optimal controls are also different. These results
seem to indicate the existence of several local minima and/or non-uniqueness
of solutions.
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Figure 2. East movement(y(t)) Figure 3. Depth movement(z(t))
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Figure 4. Pitch Angle (θ(t)) Figure 5. Deflection of rudder (δr(t))
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Figure 6. Deflection of stern plane (δs(t)) Figure 7. Deflection of bow plane (δb(t))
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Figure 8. Cost Function

Case 2. In order to reduce hydraulic oil consumption (and therefore noise genera-
tion) we penalize, in addition, the L2−norm of the control variables. Hence,
now we take:





λ = 0.001 ε = 10−6

α2 = α3 = α5 = 1, αj = 0, j 6= 2, 3, 5,

βj = 1, j = 1, 2, 3
x (0) = (0, 0, 400, 0, 0, 0, 2.5, 0, 0, 0, 0, 0)
xT = (0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0) , T = 200.

(24)

Results are shown in Figures 9-15. We keep the same line criteria for visual-
ization of results. The influence of the new ingredient (L2−norm of control
variable) in the cost function is mainly observed in Figures 9 and 12. In par-
ticular, deflection of rudder is more economic in this case compared to the
previous situation (see Figures 5 and 12). On the contrary, we lose a little of
precision in the y (t)−variable (Figures 2 and 9). In what concerns the history
of the cost function in terms of number of iterations, an exponential decay is
also observed (Fig. 15).
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Figure 9. East movement(y(t)) Figure 10. Depth movement(z(t))
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Figure 11. Pitch Angle (θ(t)) Figure 12. Deflection of rudder (δr(t))
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Figure 13. Deflection of stern plane (δs(t)) Figure 14. Deflection of bow plane (δb(t))
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Figure 15. Cost Function

Finally, we simulate a turning manoeuvre for a constant deflection of rudder of
−20o and an average surge velocity of 7.5 m/s. This is a typical test of a manoeuvre
in a complex scenario. The aim we pursue is precision in turning manoeuvre and,
at the same time, a minimum change in vertical displacement.

In order to achieve that goal, we modified slightly the parameters Φ and F in
the cost function, as follows

Φ
(
x (T ) ,xT

)
= 0 (25)

and

F (x (t) ,u (t)) =
3∑

j=1

βj (uj (t))2 +
12∑

j=1

δi (xi (t))
2 (26)

with δi > 0 another weight parameters. Now, the cost function is a commitment
between a minimal expense of control on having done the corresponding manoeuvre
and a minimal change on the state variables. For the turning test particulary we
desire the vertical displacement to be the minimum possible. Since this type of
manoeuvre is not very frequent, we do not worry about optimization with respect
to controls energy. Therefore, we take:





λ = 0.01 ε = 10−6

δ3 = 1, δi = 0, i 6= 3,

βj = 0, j = 1, 2, 3
x (0) = (0, 0, 0, 0, 0, 90, 7.5, 0, 0, 0, 0,−1.5)
xT = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , T = 700s.

Results are displayed in figures 16 - 21. As shown by these pictures, the turning
manoeuvre is very accurate, while the vertical displacement is very small. Figure 16
displays the three-dimensional turning movement. It reaches a minimum of −2.2m

and a peak of 0.6m, which compared to the initial movement with δs = −1.4o and
δb = 0o during the entire simulation time, where the minimum is −17m and the
maximum is 0m, presents a reduction about the 85% on the vertical displacement.
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6 Conclusions

The problem of manoeuvrability control for a submarine is addressed. The vehicle
dynamics is modelled as a simplified version of the classical DTNSRDC equations
of motion that adapts to the specific type of submarine under consideration. The
manoeuvrability control problem is then formulated as a nonlinear unconstrained
optimal control problem which is numerically solved by using a gradient descent
method.

Numerical tests are rooted by the following three typical naval industry require-
ments: (1) optimality of sizing rudders, (2) minimum hydraulic consumption (and
therefore minimum noise generation), and (3) reduction of vulnerability in complex
scenarios. Numerical results show that, although the nonlinear model proposed in
this work follows, in some sense, the same tendency as the more usual linear model,
however, important changes in some state and control variables are present. As a
conclusion, the nonlinearities which appear in the kinematic and dynamic equations
of motion cannot be removed in order to have more accurate simulation results.

In what concerns the optimization method proposed, it allows us to obtain satis-
factory simulation results in a model which presents serious mathematical difficulties.
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As for the computational cost of the algorithm, for a depth change manoeuvre it
takes about 60 seconds in a PC for the test cases 1 and 2. However, for the turning
manoeuvre the algorithm would require some improvement (for instance, an optimal
size-step method) in order to reduce time computation.

Finally, we emphasize that at the practical level it is interesting to include the
propeller as a control variable and to impose some (a priori) constraints on the con-
trol variables. We plan to address these three issues as well as the more theoretical
questions concerning existence and uniqueness of solutions in a future work.
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7 Appendix

m = 2352 l = 67 XG = 0
YG = 0 ZG = −0.356 ρ = 1.026
X ′

u̇ = −0.00046 Y ′
v̇ = −0.06136 N ′

v̇ = 0.00068
Z ′ẇ = −0.0144 M ′

ẇ = −0.00139 K ′
ṗ = −7e− 005

N ′
ṗ = −3e− 005 Z ′q̇ = −7e− 005 M ′

q̇ = −0.00098
K ′

v̇ = −0.0006 Y ′
ṗ = −0.0003 Ix = 16390

Iy = 659770 Iz = 659770 Ixy = 0
Izx = 0 Iyz = 0

X ′
uu = −0.0011 X ′

vv = 0.01746 X ′
ww = 0.00775

X ′
rp = 0.0006 X ′

qq = 0.00142 X ′
q|q| = 0

X ′
rr = 0.00208 X ′

vr = 0.0224 Y ′∗ = 0
Y ′

v = −0.06137 Y ′
v|v| = −0.02814 Y ′

p = −0.00305
Y ′

wp = 0.0144 Y ′
pq = 7e− 005 Y ′

r|r| = 0.00465
Y ′

r = 0.0007 Z ′∗ = −0.0003 Z ′|w| = −0.002
Z ′vv = 0.185 Z ′w = −0.02028 Z ′ww = 0.02
Z ′vp = −0.01837 Z ′q|q| = −0.00398 Z ′q = −0.00699
Z ′rr = −0.00396 Z ′vr = −0.04513 M ′∗ = 2e− 005
M ′
|w| = −0.00036 M ′

vv = 0.03461 M ′
w = 0.00478

M ′
ww = 0.00045 M ′

rp = 0.00112 M ′
q|q| = −0.00303

M ′
q = −0.00389 M ′

rr = −0.00119 M ′
vr = −0.01573

K ′∗ = 0 K ′
v = −0.00287 K ′

v|v| = −0.00214
K ′

p|p| = −0.0003 K ′
wp = −0.00021 K ′

p = −0.00062
K ′

qr = 0.0003 K ′
r|r| = −0.00019 K ′

r = 0.00026
N ′∗ = 0 N ′

v = −0.01864 N ′
v|v| = 0.01868

N ′
p = −0.00068 N ′

pq = −0.00091 N ′
r|r| = 0.00209

N ′
r = −0.00483 X ′

w|w| = 0 X ′
wq = −0.01316

M ′
vw = 0

Y ′
δr

= −0.00083 K ′
δr

= −5e− 005 N ′
δr

= −0.0012
X ′

δrδr
= −0.0039 X ′

δsδs
= −0.00119 X ′

δbδb
= −0.00299

Y ′
δr

= −0.00083 Y ′
δrη = 0.00067 Z ′δs

= −0.00512
Z ′δsη = −0.00045 Z ′δb

= −0.00512 K ′
δr

= −5e− 005
M ′

δs
= −0.00231 M ′

δsη = −0.00038 M ′
δb

= 0.00094
N ′

δr
= −0.0012 N ′

δrη = −0.00034 XB = 0
YB = 0 ZB = −0.621 B = 23073.1
W = 23073.1 n = 2
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KT0 = 0.525403 KTJ = −0.338313 KTJ2 = −0.197236
KTJ3 = 0 KTJ4 = 0 η = 1.09431
C = 0.8976 KQ0 = 0.070405 KQJ = −0.02846
KQJ2 = −0.033684 KQJ3 = 0 KQJ4 = 0
t = 0.344 wf = 0.148 D = 3.821

Y ′
vwN = −0.303 Y ′

v|v|N = −116.2e− 003 Z ′w|w|R = 7.7e− 003
N ′

vwN = −0.303 M ′
w|w|N = −6.74e− 003 N ′

v|v|N = −18.5e− 003
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